On Extensions of Commutative Banach Algebras

Hyun Jin-Oh*, Kim Seong-Won*

可換 Banach 代數의 擴大에 關하여

玄進五*, 金成原*

Introduction

In this note, all algebra will mean a commutative complex algebra with identity.

Lemmal.If $T: A^{n} \rightarrow A^{m}$ is an A-module homomorphism then T is bounded as a linear mapping of Banach spaces.

proof) Let(t_{ij}) be the matrix of T in the standard bases on A^n and A^m

and let $M = \max(||t_{ij}||)$.

since
$$||T_x|| = \sum_{j=1}^{m} ||t_{ij}x_1 + \dots + t_{im}x_m||$$
 for each

$$x = (x_1, \cdots, x_n) \in A'$$

We get that $||T_x|| = \sum_{ij} ||t_{ij}|| ||x_j|| \le \sum_{j=1}^n mM||x_j||$

and hence $||T_x|| \le mM||x||$

Therefore T is bounded and T is continuous

Theorem2. Let A be a Banach algebra and B a faithful A-algebra finitely generated and projective as an A-module.

Then B is a Banach algebra.

proof) Since B is a faithful Aalgebra and finitely generated. B is integral over A.

There exist elements b_1, \dots, b_n in B that generate B as an A-algebra, and each b_i

satisfies a monic polynom ial $f_i(x)$ in

A (X) of degree d_i .

Put

 $B_0 = A$ and $B_i = B_{i-1}(x)/(f_i(x))$ for $i = 1, \dots, n$

If B_{i-1} is normed so that it is a Banch

algebra, then we can extend this norm to B_i so that it is a Banach algebra isometric to B_{i-1} .

We see that every Banach norm on A extends to a Banach norm on B_n , where B_n is isometric (as a Banach A-module) to

^{*} 사법대학 수학교육과(Dept. of Mathematics Education, Cheju Univ., Cheju-do, 690-756, Korea)

 $A^d(d=d_1\cdot d_2\cdots d_n)$

Thus we have an A-algebra homomorphis m $f: B_n \rightarrow B$.

Since B is projective, the kernel of f is a direct summand of B_n

Thus if we define norm B by using the quotient seminorm, this seminorm is actualy a norm making B a Banach algebra.

Main Theorems

If B is an integral extension of A, then it is well known that an ideal M in A is a maximal ideal in A if and only if there is a maximal ideal N in B such that $M=N \cap A$.

From this it easily follow that R(A) = R(B) $\cap A$, where R(A) denotes the radical of A.

For an extension B of a Banach algebra A, define the mapping by

 $\Pi^{B}_{A} \mid M(B) \Rightarrow M(A) \ \Pi^{B}_{A}(\phi) = \phi/A \ \text{for each } \phi$ $\in M(B).$

clearly. Π_A^B is continuous mapping with respect to the Gelfand toplogy.

Lemma3. If B is an integral extension of A.

then Π_A^B is onto and $\hat{a} \to \Pi_A^B(\hat{a})$ is an isomorphism of \hat{A} into \hat{B} . Thus B is an in tegral extension of A.

proof)

For $\phi \in M(A)$, Put $M = \phi^{-1}(0)$.

Since M is a maximal ideal in A, there exists a maximal ideal N in B such that N $\cap A = M$.

Let Ψ denote the canonical projection of B onto B/A.

If $a \in A$, then $a - \phi(a)\psi(e)$ and thus there is an element $m \in M$ such that $a = \phi(a) + m$, hence we have

 $\psi(a) = \phi(a)\psi(e)$ and $\psi(A) = C\psi(e)$.

Since B is integral over A. B/A in integral over $\Psi(A)$ so that $B/A = \Psi(A) = c\Psi(e)$.

If put $\phi(b) = \lambda_b \psi(e)$, we have $\phi \in M(B)$, ϕ :

 $A = \Pi_A^B(\phi) = \phi \text{ and } \phi^{-1}(0) = N.$

Hence Π_A^B is onto.

Since A separates points of M(A), it follow immediately from Π_A^B is onto.

For a polynomial

$$\beta(x) = \sum \beta_i x^i \in A(x), \quad put \ \beta_{\phi}(x) = \sum \phi(B_i) x^i.$$

Theorom 4.If B is an integral extension of A, then M(A) is compact if and only if M(B) is compact.

proof) Suppose M(A) is compact.

Let || ||. denotes the sup norm over

M(A). Then $||a||_{*} \langle +\infty$ for each $a \in A$

we show that every element of B has a bounded transform.

Let
$$b \in B$$
, and $\beta(x) = x^n + \sum_{i=0}^{n-1} \beta_i x^i$

be any monic polynomial over A such that

 $\beta(b) = 0.$ if t>0 is any positive number satisfying $t^n \ge \sum_{i=0}^{n-1} ||\beta_i||_t t^i$, then for

$$\phi \in M(B), |\phi(b)| \le t \text{ for all } \widetilde{\phi} \in M(B),$$

and B is a normed algebra with respect to sup norm so that M(B) is compact in the Gelfand topology.

From now on B will denote a finitely generated projective extension of a fixed Banach algebra A. If $\phi \in M(B)$, $\Pi^B_A(\Psi) = \phi$ and $m_{\phi} = Ker\phi$.

then we define the multiplicity $m(\Psi)$ of Ψ as the complex dimension of $e(B/m_{\phi}B)$, where e is the idempotent element of B/m •B such that the support of e is $\{\Psi\}$.

If
$$\alpha(x) = \sum_{i=0}^{n} \alpha_i x^i \in A(x)$$
 and $\phi \in \mathcal{M}(A)$.

we set $Z(\alpha_0) = \{ \lambda \in C \mid \alpha_\phi(\lambda) = 0 \}$. If $\alpha(x)$ is monic we write $A_{\alpha} = A(x)/(\alpha(x))$ and Π_{α} for the projectio-

n of $M(A_a)$ onto M(A).

we recall the a finitely generated projective module M is said to be have a well-defined rank n if for any prime ideal p of A the localized module M_p . Conversely, since Π_A^B is continuous and onto hold.

References

- C. E.Rickart, Banach Algebra, D.Van Nostrand Co.Inc.(1960)
- New York Inc.(1985)
- S. W.Kim. On extensions Banach lgebra, (1990)
- J. B.Conway, A course in Funtional Analysis, springer-Vevlag

〈國文抄錄〉

可換 Banach 代數의 擴大에 關하여

本 論文에서는 (α(x))∈A(x)에 의하여 生成된 ideal이라 할때 또한 A가 複素數體C上의) 單位元을 갖는 可換 Banach代數이고 α(x)가 A上의 monic Polynomial이라 할 때 A(x)/(α(x))는 A의 하나의 擴大인데 이러한 性質을 活用하여 A의 擴大代數 B가 몇가지 條件하에서 하나의 Banach 代數가 됨을 證明하였다.