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I. Introduction

Young-Soo Chun*

It would be nice not to have to worry about the AR and MA orders of the model to be

fitted. It also is reasonable to conjecture that the autocorrelation function of a batch-

means process becomes simpler as the batch size grows, until it can be well approximated

by an ARMA( p, ¢) model with low values of pand ¢ The present may depend on the far

past, but only through the effect of the recent past, which in turn depends on its recent

past. If we increase the batch size sufficiently, the data on the past having direct in-

fluence on the present (X((m)) may be entirely contained in the previous batch mean (XH

(m)). In this study we will prove that this actually occurs in some cases by showing that

the AR and MA parameters of a batch-means process derived from an ARMA(p q)

process tends to dominate the lower-order ones as the batch size grows.

x A& 745} (Dept. of Business Administration, Cheju Univ., Cheju-do, 630-756, Korea)
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. Derivation

From Kang and Schmeiser, the batch means of the stationary ARMA( p, ¢) process is

the stationary ARMA( p, ¢’} process with

q' = p—L(p—q)/mJ ..................... (1)
The AR parameters, ¢,{(m), - .9, (m), of the batch-means process for the batch size m
are the coefficients of x', - ,x? of #, _ (° (1-a™ x), respectively, where {a, . a)

are the roots, complex or real, of the polynomial equation
I_pé, a» =0

(Note the function #; _ P$2 in z is called the dharacteristic function.)

That is, there exists a set of values {a, -, ap} such that

$ = ata,+ - +a,

$: = -(aataa+ - +aa taat o +a,_a),

¢, = (Drlaa - a.
Also,

g.(m) = DTG D - Q) (@@, — a)m h =1, 2 « ,p, o )
where

Ol iy - i) =(1if i, & -, i are all different

[0 otherwise.

That is,
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¢ (m) = am+a"+ - +anm,
¢.(m) = -{(a@)m+ @a)"+ - +(@a)"+ (@a)"+ - +(a, 2a)™
¢,(m) = (-Drllaa, - a)m

Notice that a {1 for 1 £j< p by stationarity of the original process. Therefore |¢, (m,)
I < 1g,(my)| for m > m if the aj's are all real and m and m are even. That is, ¢, (m)
dies out with increasing m Also, we can see that ¢,(m) tends to dominate the other AR
parameters, ¢,(m), LR (m), as m grows because higer-order AR parameters would die
out faster than lower-order AR parameters unless more than one of the ah's are close to
L.

M. Dominance of Low-Order Parameters

Even though it is not always the case, assume for the moment that the ah's are all real

and m is even. We can sort {a, - ,ap} into {am, ,a(p)} in descending order of
absolute value. i.e. 1) Iaml 2 2l > > Ia(p)l > (0. Here we can assume Iaml >0
(It Iaml = 0, it is implied that a, = a, = - = a, = 0, and thus ¢, = ¢, = - = ¢p

= (. Therefore, the process does not have the autoregressive property, making it very

simple to estimate the autocorrelations.) Then we have from (2)

¢ (m) = am+ - +am 2 a,™>0,

and
0<lg,ml < Clagja, « ay™
Therefore,
0 < I¢,(m)/¢,(m) |, C la,a, - a,m/ag,
= ,CGlay )" ~O0asm—® 2<h<p
because C, is a constant and 0 < @, - a,)*<l. Thatis, ¢ (m) tends to dominate
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higher-order AR parameters as m grows. The speed of the convergence is governed by |

@, a(m)’l, and would be fast unless a a,_, are all close to 1.

@ T fp

IV. Empirical study

It need not be true that the ah’s are all real, since they may include some pairs of con-
jugate complex numbers. In such cases, ¢,(m) shows damped fluctuation” with m
possibly becoming close to 0, causing ¢, (m)/$,(m) to explode even with large m That is,
the ratio ¢, (m)/¢,(m) may not converge to zero when some aj's have an imaginary
component.

To check how often this failure of convergence happens, we executed an experiment
with 200 randomly chosen AR(3) models. In this experiment, we generated a candidate set
of parameter values of an AR (3) model by use of a random-number generator such that
I8, (pCh. which obviously should be the case from (2). The generated model went
through a stationarity check discussed by Pandit and Wu. We kept it if it passed the
stationarity check, and otherwise threw it away to generate and test another candidate set
of parameters. In this way we generated many sets of parameters until we got 200 sta-
tionary sets. It should be noted that a stationary set is chosen even if the values of the
roots (‘E'S) of the associated characteristic equation may be complex.

Taking each set as the parameters ¢,, ¢, @; of an original stationary AR(3) process,
we calculated ¢,(m), ¢,(m), ¢#,(m), 6 (m), 6 (m), and &(m), the AR and MaA
parameters of a batch-means process with batch size m for a various values of m The
results are summarized in Table 1.

In Table 1 we see that ¢,(m) tends to die out with increasing m much faster than does
$,(m). For the original process, ¢&,(m)/¢,{m) 0.10 in just 5% of the cases. However,
this frequency increases with the batch size m to become 83.5% for m = 32. The
dominance of ¢,{(m) over #;(m) is even greater. In 98% of the cases, |g,(m)|) 10]¢;(m}]|

for the batch size m = 16. In summary, we can conclude that we may neglect all the AR

1) Suppose the first s pairs of (aj, 1 € j< B are conjugate complex numbers and that
they can be represented as 7,eiw', refw’, -, and 7_ewm 7 e'wsm where rj's and
wj's are real numbers, Irjl {1, and ¢ = sqrt(-1). Then

¢i(m) = a+ - +anm
= nelw'treie’+ oo relws+reiuste M+ o +am
= nrcos(me) + - +7m/cos(mw) + g, M+ - +am
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Table 1. Relative frequencies that I (m)/¢,(m) | > ¢ and 16,(m)/6,(m)| > c
Original process : AR(3)

Number of replications : 200 (Unit : %)
Batch size c=10 c=20
1 5.0 2.5
2 12.5 . 55
4 22.5 12.5
|#:(m) /¢, (m) | 8 37.5 26.5
16 64.0 46.5
32 83.5 72.5
64 9.5 87.5
1 6.5 3.0
2 33.0 21.0
4 63.0 51.0
I8, {m) /@y (m) | 8 91.0 83.0
16 98.0 92.5
32 100.0 99.0
64 100.0 100.0
1 N.A. N. A
2 20.5 7.5
4 33.0 18.0
16,{m) /6, (m) | 8 46.5 30.5
16 72.0 55.5
32 86.5 76.5
64 94.5 88.0
1 N. A N. A
2 N.A. N. A,
4 80.5 64.5
16, (m} /6, (m) | 8 93.0 91.0
16 99.5 97.5
32 100.0 9.5
‘64 100.0 99.5

parameters except the first-order one when we fit an ARMA model to a batch-means
process if the batch size is large enough.

The dominance relationship observed in AR parameters of a batch-means process is
also expected in MA parameters. From (1), ¢ = pif p> ¢and mis sufficiently large. For

this value of m the batch-means process can be well approximated by an ARMA(L, p
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model if the dominance of ¢,(m) has already been realized. Now consider an even larger
batch size, say, ms a batch size stimes as large as m The MA order ¢’ for this batch
size must be §' = 1-1(1-p)/sJ again by (1}). Therefore, ¢’ would be at most 1 for the
batch size msif sis also large enough.

In the experiment mentioned already in this section, we calculated MA parameters of
batch-means processes for the 200 randomly chosen AR (3) processes. As shown in Table
1, we can conclude that & (m) tends to be prevalent among MA parameters as the batch
size Erows.

Actually, we carried out the same type of experiments for the ARMA(2,2), ARMA (3,

3). and ARMA (4, 4) processes. And we got the similar observations.

V. Conclusions

In summary, it appears that the batch-means data can be well approximated by an
ARMA(1,1) model if the batch size is sufficiently large. Thus, we have found an
alternative to the model-selection c.i. procedure introduced by Schriber and Andrews.
Instead of trying to find p and ¢ the appropriate AR and MA orders of the model to be
fitted to the original data, we can try to fit, say, an ARMA(1,1) model to a batch-means

sequence if we have a rule to determine the batch size appropriate for ARMA (1. 1) fitting.
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