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Introduction

Furi and Vignoli(1975) introduced a class of all
quasi-bounded (nonlinear) maps on a Banach space
X and defined a spectrum for this class. They gave
some of the basic properties for such spectrum, and
extended surjectivity results previously obtained by
Granas and Kranosel’skij.

Canavati(1979) defined a numerical range for a
broader class of all numerically bounded maps on a
Banach space X and studied it in a more systematic
way. Kim and Yang(1984) defined a new class of all
numerically bounded maps on a Hilbert C*-module
and studied their properties. What we shall do here
is to define a joint numerical range for a broader
class of n-tuples of continuous maps; the "jointly
*-numerically bounded” n-tuples (to be defined be-
low) on a Banach space, and give some properties
of it. Among other properties, our joint numerical
range will be compact and connected, and will coin-
cide with the closure of joint spatial numerial range
V(T), in the particular case when T = (Ty,--- ,T,)
is an n-tuple of bounded linear operators on a Ba-
nach space. Also we define a joint asymptotic spec-
trum for a class of jointly #-quasibounded n-tuples
(to be defined below) of maps, and show that it is a
compact subset of our numerical range. Finally we
will introduce the concept of joint lower *-numerical
range and investigate its properties, and we are go-
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ing to define the numerical range for the numeri-
cally bounded n-tuple of vector fields on the unit
sphere of a Banach space. In particular, if n = 1,
our concepts coincide with those of Canavati.

The plan of the work is as follows: In section
2 we will define some classes of n-tuples of contin-
uous maps on a Banach space X, which are going
to be the object of study in this work. For rea-
sons that are going to be apparent in later sections,
we found more convenient to deal with maps of the
form F: X xX* — X, insteadof maps f : X — X,
the later being a particular case of the former. Here
X* denotes the dual space of X. In section 3 we will
define the joint s+-numerical range for the n-tuple
F = (F,--- ,Fy) of maps. In section 4, we are go-
ing to define the joint *-asymptotic spectrum of an
n-tuple F and study its relations with the joint *-
numerical range. In section §, we will introduce the
concept of adjoint of jointly *-numerically bounded
n-tuple and we will show that they have the same
numerical range. Finally, in section 6 we are going
to define the joint numerical range for the numer-
ically bounded n-tuple of vector fields on the unit
sphere of a Banach space.

Thoughout this paper, let X be a Banach space
over K(R or C),X"* its dual space, and denote
by < z,z* > (z € X,z* € X*) the duality map
between X and X*. If A = (A\,---,),) € K",
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we set |A| = (le\;lz) . For an n-tuple F =
f=1
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(Fy,--- ,Fa)of mapsand z € X, F(z) means F(z) =
(Fi(z),- - , Fa(z)), and < F(z),z* > denotes (<
Fy(z),z* >,--- , < Fa(z),2* >).

Some Spaces of n-tuples of
Nonlinear Maps

DEFINITION 2.1. Let X be a Banach space over
the field K. (a) B™"(X) is the vector space of all
n-tuples £ = (f1,--- , fa) of continuous maps fi:
X — X such that

n 2
e = (E“fi(’)"z) < Mjjz|
j=1

for some M > 0 and all z € X. We define the
joint norm ||fl} of £ = (f1,---,fa) 2s the smallest
M > 0 such that this inequality holds for all z € X.
An element of B*(X) is called a jointly bounded n-
tuple on X. (b) Q*(X) is the vector space of all
jointly quasibounded n-tuples on X. That is, the
space of all n-tuples f = (f1,-- , Ja) of continuous
maps f; : X — X such that there exist A,B > 0
satisfying
) 1
n 2
@) = (Dm(z)ﬂ’) < A+Blsll, zeX.
Jj=1
(1)

Denote |f| the joint quasinormof f = (fi,- -, fa)
to be the infimum of all B > 0 for which (1) holds
for some A > 0, i.e.,

Gl

f| = limsup———
M} = him sup

In particular, if n = 1, then B"(X) is the vector
space of all bounded maps on X and Q™(X) is the
vector space of all quasibounded mapson X. Notice
that ||-|| is 2 norm on B"(X) and |-| is a semi-norm

on Q*(X).

The norm x weak® topology in X x X*, is the
topology in X x X* given by the norm topology
on X and the weak® topology on X *(Bonsall Dun-
can,1971).

We define the following subsets of X x X*,

1, = {(z,2") € Xx X" : flzll = =" 2 v, I=f®

=< z,z* >}
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for r >0, and
o, = [ J1,.
r>0

LEMMA 2.2(BONSALL & DUNCAN, 1973). Let
x denote the natural projection of X x X* onto X,
and let E be a subset of I, that is relatively closed
in TI, with respect to the norm x weak® topology.
Then x(E) is a (norm) closed subset of X.

LEMMA 2.3(BONSALL & DUNCAN, 1973). Each
M {r > 0) and IIy are connected subsets of X x X*
with the norm x weak® topology, unless X has di-
mension one over R.

From now on we shall assume that IIg has the
norm x weak® topology induced as a subset of X x
X*. Also we shall assume that X does not have
dimension one over R.

DEFINITION 2.4. Let F = (F,--- ,F,) be an
n-tuple of continuous maps from Iy into X. We
say that F is jointly *-bounded if .

F(z,z*)i
Flls = sup——
FFll = S e
We denote by B*(X) the vector space of all
jointly *-bounded n-tuples.

Notice that || - ||. is 2 norm on B}(X). We can
consider the vector space B"(X) of all n-tuples of
bounded maps as a vector subspace of BJ(X) in a
natural way, namely ; if £ = (fi,---, fa) € B"(X),
the mapping F(z,z*) = f(z) = (fi(z),- - , fn(2))
belongs to B2(X) and ||ff] = [|F|l..

THEOREM 2.5. B™ X) is a Banach space.

< oo

Proof. This is a standard argument, and so it
will be omitted.

DEFINITION 2.6. Let F = (F,--- ,F,) be an
n-tuple of continuous maps from Iy into X. We
say that F is jointly «-quasibounded if

IF(z, =)
||z|| < +00.

We denote by Q?(X), the vector space of all jointly
+-quasibounded n-tuples.

Notice that |- |. is a seminorm on Q2{(X). Obi-
ously one has B?(X) € Q7(X) and

|Fls = lim sup
r—ooqp,

[Fl. < {IF..

" We can consider the vector space Q*(X) as a
vector space QP(X) in a natural way, namely ; if f €
Q"(X), then the mapping F(z,z*) = f(z) belongs
to Q™(X) and |f| = [F}..

LEMMA 2.7. For any F € Q2(X), there exists a
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sequence < Fp, > in B?(X) such that [F, — F|. =
0 (m=1,2,3,---) and

Fmlle — IF

as m — oo.

Proof. Let p? = [|z||® + ||lz*|%, and define

F(z,z*) if p2m,
Fu(z,z*) = m

p..,m .
—F(—z,—z")if 0 < p<m.
- (p p ) I

We have

[Pz, =)l 1F(z,2")l
Fall. = supimi2 2 IEGz, 2l
IFmlle = sup=—2 P el

Therefore F,,, € B?(X) for all m large enough
and

LB, ;

iFmlls — [Fl. as m — oco.

DEFINITION 2.8. (2) Let F,G € Q2(X). Then-
tuple F is said to be jointly *-asymptotically equiv-
alent to G (j.»- a.e) if |[F - Gl. = 0. It is easy to see
that this is an equivalence relation. (b) 62(){) is
the normed space of all equivalence class of jointly *-
quasibounded n-tuples, i.e. Q™(X) = QMX)/N(|-
|), where F € N*(|-|.) iff |[Fl. = 0. The norm
on 6',‘()() is the one induced by | - | and will be
denoted in the same way.

From Lemma 2.7, we see that the mapping B2(X)

-Qr(X), F - F is onto.

Furthermore we have:

" THEOREM 2.9. Q"(X) is a Banach space.

Proof. Let {ﬁm =< i',(,.l),--- ,13(.,") >} be any
sequence in Q7(X) such that 3 |Fm|. converges.
We have to show that 3" Frn = (3 B j298))

converges. 1.e. 3 B convergesforeachj =1,--- ,n.

By Lemma 2.7, for any positive integer m, we can
choose G, € B2(X) such that

Gm = Fmand||Gmlle < |Fmle +27™

Since B?(X) is a Banach space, ), Gm con-
verges to an element G € BZ{X). From the conti-
nuity of the linear projection B} (X) — 62‘(/\’), we
obtain T Gm = L Fm = G.

DEFINITION 2.10. Let F = (Fy,--- ,F,) be an
n-tuple of continuous maps from Iy into X. We say
that F is jointly *-numerically bounded if

| < F(z,2°%),2° > |

fi=llll==|

we(F) = lim sup < +o0.

T—00 n'

We denote by W2(X), the vector space of all
jointly *-numerically bounded n-tuples.

Notice that w, is a seminorm on W((X). If
F € W2(X), then we let

| < F(z,2°%),2* > |

I=lili==

Obviously one has Q*(X) € W*(X) and w.(F) <
|Fl.

DEFINITION 2.11. LetF = (F,--- ,Fa) € W} {X)
and for j = 1,--- ,n, consider the maps

o(®)= i

F;’:ﬂo—-vX and F}':Ho—ox
given by

V(g ) = < Fj(z,z°%),z* >
)= e
and

Fl(z,2") = Fy(z,5") - F}(z,2").

Then F = F* + F" (ie, F; = F} + F] forj =
1,---,n.) Then-tuplesF* = (Fy,--- ,F;)andF" =
(F7,--+ , FT) are called the jointly normal and jointly
tangent components of F respectively.

The following Lemma follows immediately from
the definitions.

LEMMA 2.12. Let F = (Fi, -, Fa) € W2(X).
Then

(a) < F*(z,2%),z" >=< F(z,2%),2" >, (z,z*) €
nu.
(b) < F'(z,2°%),z" >=0, (z,z°) €l
(c) F¥ € Q}(X) and |F*]. = w.(F).

The following result is also obvious.

THEOREM 2.13. Let F = (Fy,--- ,F,) be an n-
tuple of continuous maps from Il into X. ThenF €
Wn(X) if and only if there exists n-tuples G,H of
continuous maps from Iy into X with G € Q}X)
and H satisfying < H(z,z*),z* >=0 ((z,2*) €
INy), such that F = G + H. Such an n-tuple H is
said to be a jointly *-orthogonal n-tuple.

DEFINITION 2.14. (a) Let F,G € W(X). The
n-tuple F is said to be jointly +-asymptotically nu-
merically equivalent (i.ej. *-a.n.e) to G if w.(F —
G)=0.

It is easy to see that there is an equivalence re-
lation. __

{b) W2(X) is the normed space of all equiv-
alence classes of jointly *-numerically bounded n-

-1i3-
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tuples, i.e., W2(X) = W™(X)/N*(w,), where F €
N™(w.) iff wo(F) = 0. The norm on W*(X) is the
one induced by w,., and it will be denoted in the
same way.

Now let ~: Q(X) — Q.(X)and A : W(X) —
W:’(X )} be natural linear projections. Then we
have the following commutative diagram of conti-
nous linear maps

Wr(X) —— W.(X)

b T
QI(X) —— QI(X)

where j is the inclusion map of Q7(X) into W2(X),
g(F)=F and r(F) = F.

Note that the map r is well-defined, because if
F,G € Q7(X) are such that F = G, then w,(F —
G) < |F — G}. = 0, and hence F = G.

THEOREM 2.15. W:‘(X) is a Banach space.

Proof. Let {F} be a sequence in W:‘(X) such
that 3 w.(Fm) < co. We have to show that DI P
< Y ... Fi™MY converges.

Since w.(F) = w.(F) = [F*). = [F*].(F ¢
W3(X)), where F¥ € QF(X) (Lemma 2.12) is the
jointly normal component of F, we have

Y IFLL =Y wi(Fm) < 0. M

But {f‘:‘"} is a sequence in the Banach space
Qr(X), and it follows from (1) and Theorem 2.9
that the series 3° F¥ converges to an element F €
6:‘()(). Since the mapping r : 6','()() — W:‘(X)

is linear and continous, we must have

PRIEDILGAELIIES )

But F = F for F € W1(X). Hence from (2) we
obtain }_ F,, =F.

The joint * -numerical range

DEFINITION 3.1. Let F € W2(X) and consider
the continuous map
¢r : [l — K" given by
< F(z,z*),z* >

===

¢r(x,z%) =

We define the joint *-numerical range Q,(F) of F =

(Fr,--- , Fp) as the set
2.(F) = 0,3¢0IL).

In other words, A = (Ay,---,A,) € Q(F) if and
only if there exists a sequence {(z,z})} in Ty such
that ||zg|] > k and
< Fi(zhx:)az; > as k— oo
ENIEH]

(J =1,--- 1"’)'

THEOREM 3.2. If F € W}(X), then Q.(F) is a
nonempty compact connected subset of K™,

Proof. Since F € WP(X), the set gg(ll,) are
bounded for all r > 0 large enough. Now {¢p(11,)}

is a nest family of compact nonempty sets, therefore
by Cantor’s theorem 2,(F) # ¢ and is compact.

- )

Now from Lemma. 2.3, we have that each ¢p(II,)
is a connected subset of K®. Thus 0.(F) being
intersection of a nested family of compact connected
sets is connected as well (Kuratowsky, 1973).

" 1t is obvious that for any F,G € W*(X) and
reK,
(8) Qu(uF)=pQ.(F) and
(b) QU(F+ G) CN(F) + Q(G),
where uF denotes (uFy,--- , i Fy).

REMARK 3.3. Forany F,G € W2*(X) and u €
K!

(a) F* € Q¥(X) and |F*|. = w.(F),

(b) Qu(F*)'= 0.(F) and 0.(F7) = {o},

(c) Qu(pF) = pQ.(F), and

(d) Q. (F + G) C Q.(F) + Q(G),

THEOREM 3.4. If F,G € W X) and w.(F -
G) =0, then Q.(F) = Q.(G).

Proof. From the above remark, we have
Q.(F) = Q.(F*) and $.(G) = 2.(G").

Also we have |[F* — G*|, = w(F - G) = 0.

We shall show that Q.(F¥) = Q,(G*). Let A =
(A1,--+ ,An) € Q.(F¥). Then there is a sequence
{(z&,z})} in T, such that [|zx]| > k and

< FY(zk,21), 2} >
Hzellll=;1l
< Gj(zp,z}) 2} >
[lzelill=% 1
< (G} — F})ze, 23 )21 > < FY(zx,2}), 2} >

EANEH] [ERINE]

-} as ko oo(j=1,---,n)

~114-
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But

| <(G¥ — Fy)zx,33), 33 > | _ Gy = FY )=zw, zp)ll

{EAIIEI

and |G¥ — F*|. =0 imply

[zl

< (G§ — FY)z+,2}), 21 >

-0 (j=1,2,---,n).

leelllzi Il
(2
Hence from (1) and (2), we see that
< G;(zk,x;}zi, > A as k- oo
Hzelllizgll .
(J = 1)21"' 1n)-

Therefore Q.(F¥) C Q.(G*). Theinclusion Q,(G*) C
Q.(F*) is proved in the same way.

THEOREM 3.5. If F € W2(X), then a,(ur —
F) > dist{(p,Qu(F)), p = (1, - .pa) € K",
where ur = (pim,- -« , ypx).

Proof. We shall show a little more, namely; that
for any p = (u1, - ,ua) € K", there exists A =
(A1, , An) € Q.(F) such that a,(ur — F) = |u -
Al

By definition of a.(ux — F), there is a sequence
{(z&,z¢)} in TIp such that {lzi]] > k and

| < (um = F)(zx,21), 71 > |
ENIEA]

Since F € W2(X), without loss of generality we
may assume that the sequence.
{ < F(zg,z1), 2} >}
LRI

is convergent to some X € Q,(F).
Thus from (1) we obtain

= a,(ux —F). (1)

Au(pm — F)
- lim | < pr(ze,z3), 23 > — < F(zg,23), 27 > |
koo (EIVEA|
<zp,zp >p < F(zi,z}3), 75 >
k—oo| [lzx|lllz}ll Nlzelili=zli
= |p— Al

THEOREM 3.6. If F € W}MX), then 1. (F) =
{AeK": a.ir—-F)=0}.

Proof. Let A = {A € K" : a.(Ax — F) = 0}.
Then from Theorem 3.5, we have A C (0.(F). Now
let A € Q.(F). Then there is a sequence {(zx,z})}
in ITg such that ||zi|| > k and

~1I5-

’

< F(z,zp), 2z} >

EAEA]

This, in turn, implies that

— A=A, - ,An) as k — co.

< (Ajm = Fj)(zi,x}), 25 >
ENIIEH]

—0 as k— oo
(G=12---,n)
and hence that a.(Ar — F) = 0. Therefore A € A

and Q.(F) C A.

REMARK 3.7. Forany F,G € W*(X) and u €
K,

(a) 0 < ou(F) < w.(F),

(b) a.(uF) = {u|a.(F),

(¢) au(F + G) < au(F) + w.(G),

(d) au(F) — wo(G) < ao(F + G),

(e) |ae(F) — ao(G)| < w.(F — G), and

() au(F) < |, if a € Q. (F).

Recall that if (M, d) is a metric space and I'(M)
denotes the set of all non-void closed subsets of M,
and if we define

v(A, B) = max{supdist(z, A}, supdist(z,B)},
z€EB zEA
A,BeT(M).

Then (T'(M), ) is a metric space. The metric v is
called the Hausdorff metric.

- THEOREM 3.8. fF,G € W(X), then
Y(Q(F),2(G)) S wo(F - G),
where v denotes the Hausdorff metric in T(K™).
Proof. We have
Y(Q(F), 2.(G)) = max{sup{dist(}, Q.(F) :
A € .(G)},
sup{dist(), Q(G)) : A € Q(F)}},
and from Theorem 3.5,
dist(), 2e(F)) € au(Ar - F),
dist(A, Q.(G)) € a(Ar - G).
Also by Theorem 3.6, and remark 3.7(c),
a(Ar —F)=oa,((Axr - G)+ (G - F))
Sa,(Ar - G)+ w. (G -F)
=w.(G—-F), XeQ(G),
and similarly
a(Ar —G) < w,(F-G), reQ(F).

Hence from these we obtain the desired result.
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DEFINITION 3.9. Let Xo = X — {0} and f =
(f1,*+ » fa) be an n-tuple of continuous maps from
Xo into X. We say that f is jointly numerically
bounded if the n-tuple ¥ = (F1,--- ,Fyp) given by

F;'(I,:') = fj(z) (] = 12,--- »n) is joint}y *-
numerically bounded, i.e.,
. | < f(z),z* >
lim sup———————— < 0©
L E B

In this case, the numbers w.(F), a.(F) and the
joint +-numerical range Q.(F) are denoted by w(f),a
(f)and Q(f)respectively.We denote by W™(X) the
vector space consisting of all numerically bounded
n-tuples on Xy. Notice that W"(X) can be consid-
ered, in a natural way, as a vector space of W}'(X),
and that w is a seminorm on W"(X). Obviously
one has Q*(X) C W™(X) and w(f) < |f|

Notice that even through f is an n-tuple of con-
tinuous maps from X into X, the joint normal com-
ponent f¥ of f,

v - <f)(I),I. > <f,.(1'),1:‘ >

f’(z,z%) = ——T, ", 7,
Nzliliz= i =iz

is actually defined on IIy. This is one of the reasons

why we study the more general n-tuples F of maps
from I1; into X.

Of course, this ambiguity disappears if X is a
Banach space with a smooth unit ball. Since, in this
case, there is a unique semi-inner product [,]in X
such that [z,z] = ||z}|?, =z € X, and the formulas
for w(f), a(f), Qf) for a given f € W"(X), take
the form

R (G
(f) = limsup™= e

l15(z),
o0 = ot Epp

and Q(f) = rl;\odtf(E,) where E, = {z € X :
flzlf 27} (r>0)

THEOREM 3.10. f T = (Ti,---
tuple of linear operators on X, then

(a) AT)
f(Taz)): £ € X*|lzll = |fll = f(z) = 1} denotes
the joint spatial numerical range of T.

(b) w(T)=v(T), where v(T) = max{|A|: A €
V(T)} denotes the joint spatial numerical radius of
T.

Proof. The proofs follow from the definitions.

,Tn) is a n-

= V(T), where V(T) = {(f(Tx2),- -,

The joint x-asymptotic spectrum

DEFINITION 4.1. Forany F € Q?(X), we define

d(F)= lim inf I (" '" "
and the joint *-asymptotic spectrum Y (F) of F,
as the set

T.(F) = {A € K" : d.(Ar — F) = 0},

where as usual = denotes the natural projection of
X x X* onto X.

For any F,G € Q2?(X) and p € K, it is obvious
that

(a) 0 < d.(F) < |Fla,

(b) do(pF) = |u|do(F),

(c) duo(F + G) < du(F) +|Gl.,

(d) do(F) — |Gle £ do(F + G),

(e} |de(F) - du(G)| < |F — G, and

) do(F) <A, Ae T (F).

THEOREM 4.2. If F,G € Q¥ X), then

(3) T.(F) C ().

(b) If |F - G|, =0, then 3 (F) = E.(G).

(c) 7.(F) < |F|., where 7.(F) = sup{|}| :
Z (F)} is the joint *-asymptotic spectral radxus of

(d) 3 .(F) is compact.

Proof. (a) It follows from the obvious inequality
a.(F) < d.(F) and Theorem 3.6.
(b) Immediate from the above remark (e).

(c) Let A = (A1,---,An) € X2, (F). By the
above remark (e), we have
A = |Fl. < |\ - du(F) S do(A7 - F) = 0.

(d) By the above remark (e), the mapping A =
(M, -+ s An) = du(Ax — F) is continuous and hence
3.(F) is closed. By (c), it is bounded and hence

compact.

Recall that a Banach space X is said to be uni-
formly convex if whenever z, € X, ya € X, ||znl| £
1, lyall < 1and [fiza+ynll = 2, then ||za —ynl —

LEMMA 4.3(Cno0,1986). The Cartesian prod-
uct of finitely many uniformly convex Banach spaces
can be given a uniformly convex norm.

THEOREM 4.4. If X is uniformly convex and
= (Fy,--+ ,Fa) € Q2(X), then {X € Q.(F) :
l | =IFL} CZ (F).

~lI6-
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Proof. Let A € Q,(F) and |A| = |F|.. We may
assume that |A\| = |F|. = 1. Then there exists
(zx,z}) € I such that ||zg|| > k and

< Fi(zg,z}), 23 >
————’( 6 24) 2 — ) as koo

llzelill=3]
(J = 1v2» i |n)'
Since
n - - 2
Z < (/\j1r+Fj)(:k:zk),Ik > 21 as ko oo
2 2Mzellizzl
and
1
"+ Fy)zea xR
1 2 Z 2 J Lind 3 ,
2 2l

(A7 + Fy)(zs,23) 2}
2|z} EA

>

1
2\ 2
’

1
(Z (7 + F)as, ) ’)’qz .

>3 |<
=1
it follows that

llzxl

=1

So by Lemma 4.3, we have

N (TCVE ) I :
(Z BN ) —0 as k— oo

=1

Hence we obtain d,(Ar—F) = 0,i.e, A € 3_ (F).

COROLLARY 4.5. If X is uniformly convex and
F=(F, - ,F) € QNX) withw.(F) = |F|,, then
r.(F) = |Fl..

Proof. Since 3 (F) € Q.(F),
F|..
! IAlso by Theorem 4.4, w.(F) < r,(F). Hence
r(F) = w.(F) = |Fl..

THEOREM 4.6. Let F = (Fy,--- ,F,) be an n-
tuple of maps from Iy into X such that

ro(F) S w.(F) =

IF(z,z*)l =llzl for (z,2%)€ .
Then A = (M, ,An) € 3. (F) implies | A} = 1.
Proof. Let A € }_ (F). Then by Definition 4.1,
we can find (zg,z3) € I such that

IO~ F)a, 2Dl < Sl

1 -
Hence [[F(ze, z3)l|~ ~llz&ll < [Alllex} < 1F(z, 2D
Using the assumption on F we get

(1= Dyzall < Pllzell €4 Dzl

Dividing by |jz«| and letting n — oo completes
the proof.

The joint lower *-numerical
range

If Y is a Banach space, then Y and Y will de-
note the dual of Y together with the norm(strong)
and weak® topologies respectively. We denote by
J: X — (X?)2, the canonical isometric embedding
of X into its bidual (X;).. By the result of Gold-
stine, J{BR) is weak®-dense in By, where B =
{z € X : [lzll < R} and By = {z™* € (XJ) :
l=**ll< R} (R>0).

Since our objective in this section is to study n-
tuples of maps from X x (X7): into X, we define
the following sets

7 = {(=*,2°*) € X7 x (XJ)0: [l=°l = li=**]| 2

r, "x'"" =< z*,z** >} (T > 0)‘ and II; = .-L>Jon:.

As before, we shall assume that II§ has the norm
x weak* topology induced as a subset of X; x
(X205

From Lemma 2.3, we know that each IT} (r >
0) and II§ are connected subsets of X x (X7}
Note that each II, can be considered, in a natural
way, as a subset of [I? by means of the identification

z=J(z)

I, «— ' = {(*,2) : (z,2*) € I} C I},
Thus G € WP(X*) will mean that G is an n-
tuple of continuous maps from IIJ into X* such that
| < G(z*,z**),z°* > |
== llliz==
DEFINITION 5.1. IfG € W}(X*), we define the

Joint lower s-numerical range AQ{G) of G as the
set

w,(G) = lim sup < 00.

=00 e
’

AL(G) = [ ¥a(IT7T)
r>0
where

< G(:t‘,z“),z“ >
paten 2 < ,
(== = = e

(z*,2"") € I05.

-l7-
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and
. _ <G(z*,Jz),Jz >
Yol IR =
< z,G(z*,Jz) > .
=" (z,2")€lo.
[l=llll=*]l

It is clear that AQ(G) € Q.(G), where, as
usual, 1.(G) denotes the joint *-numerical range
of G. '

LEMMA 5.2(CANAVATI, 1979). 117! is normx
weak® dense in II}(r > 0), i.e, in the topology of
X3 x (X305

THEOREM 5.3. IfG € W2 (X*), then AQ,(G) =
Q.(G).

Proof. We have only to prove that Q.(G) C
A, (G). Since ¥g : [1§ — K™ is a continuous map,
we have

Uo(I7T) C ¥a(II;Y) (r>0).
From the previous lemma,
Yg(II}) € ¥a(IIF') (r>0).
Hence 0.(G) = N ¥a(*) C N Ya(I!) =
r>0 r>0
AQ(G).

The numerical range for vector
fields on the unit space

Let X be a Banach space and S = {z € X :

[lz]| = 1} be the unit sphere in X. Let & = (P, -+ ,%n)

be an n-tuple of continuous maps from S into X,
i.e., an n-tuple of vector fields on S. We say that

8(z) = 2l@i(llzl'2),-- , Balllzl~2)), = #
0is numerically bounded. In this case, welet w(®) =
w(®), a(®) = a(P) and (&) = ().

If we set II {(u,u*) € X x X* ¢ |ju|| =
fflu*|l =< w,u* >= 1}, then II is a connected subset
of X x X* with the norm x weak* topology.

THEOREM 6.1. Let & = (&,,--- ,P,) be a nu-
merically bounded n-tuple of vector fields on S.
Then

(2)

(b)

(c)

w(®) = supy | < $(u),u* > |

o ®) = infrr | < &(u),u* > |

() = {< B(u),u* >: (u,u*) €I},
where E denotes the closure of E.

Proof. (2) and (b) follow from

< &(z),z* > <|zlle(l=zlit2),z* >

=Nz =A==

=< &(llz]| 7 =), f=" 7 2" >

=< ®(u),u* >,

whereu = ||zf| "'z, u* =|z*||"'z* and (uv,u*) €

Now (c) becomes evident.

From this last result we see that Q(®) coincides
with the closure V(&) of the numerical range V(®)
of an n-tuple ® = (&,,--- ,$,) of continuous maps
from S into X.
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numerical range for nonlinear operators,
(BEXR)
FERR B o] A ~HMETY G

Banach ZEfelA &&#7 *-MHR (*-quasibounded) EEBEM R AUA *=-Fly) HH(x-
numerically bounded) Q) MRS W4+F3he] FiEE Wiz, ol AVA x-+3AA {AA Y4379
&4 RUE (numerical range) § Aolste] ol2l 2irixl MEE =Adc, B, o PWKE C"Y compact
AR WS, o W4Fo| B FAXEY «t o ZMM $99 Mast dxUc. = AR
*-Z2 54 Y5Z9 BAM WY 29EPE B3t o] 2HEFe] £99 compact ¥ EAYUE ¥
olx, —BES FDoNA o A=} $9zte] FAFE wilch. 222 Banach Fo MBEMeA o
&44Ze ol x-49¢ A o] 4ol FARESA UANY HY EH4E FU
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