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Summary

Over a double shelf, continental shelf waves also propagate with the shallow water to the right

in the Northern Hemisphere, A double shelf topography allows the existence of two sets of waves

propagating in opposite directions. Their group velocities have the same direction as phase velocity

in the long wave case but the opposite direction in the short wave case. The each shelf mode has

a zero group velocity at some intermediate value of wave length .

Introduction

Since the advent of the continental shelf
wave theory by Buchwald and Adams (1968),
the theory of coastally trapped waves has
gradually been established for coastal areas
that lie next to a deep ocean. The general
properties of continental waves over various
monotonic depth profiles have been reviewed
by LeBlond and Mysak(1978) and a general
theory of these waves has been discussed by
Huthnance (1975, 1978).

There are other coastal areas in which the
depth of the ocean does not increase
monotonically away from the shore., The bot-
across

tom slope is reversed, for example,
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This also
admits trapped waves and these waves has
been investigate by Louis (1978), Mysak et ol
(1979, 1980, 1981), and Brink (1983). The
bottom slope is also reversed across a double

submarine banks and trenches.

shelf topography such as in the Yellow Sea,
Although the coastally trapped waves over a
double shelf topography share some of the
characteristics of waves found over banks and
trenches, the former differs from the latter in
important dynamics ways. In spite of a basic
establishment of the wave theory over a
double shelf topography (Pang, 1978 : Hsueh
and Pang, 1989), it still needs to develop the
theory for clarifying the intrinsic dynamics.
The purpese of this paper is to establish the

theory of the free waves over a exponential
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double shelf topography clearly,

Exponential bottom topography allows a
simple analytical solution to the coastally
trapped wave problem which can readily be
compared to results from existing theories.
Thus, the first step is to establish the theory
with exponential bottom topography. We want
to see if the theory recovers the familiar
results for the single shelf case when the
problem is reduced to that of two dynamically
separate shelves.

Field Equation and Boundary
conditions

Small perturbations to a barqtropic ocean
satisfy the equation

Hp,, +H,p,+Hp +fHp + p) - ((-u’]
/8)p=-((-e*)/R)py +H(,X). Wy

In this equation, x, ¥, t, p, &, f, r, H, p,.
X and Y refer, respectively, to cross—shelf
distance, alongshore distance, time, the
perturbation pressure divided by mean water
density, the acceleration due to gravity, the
Coriolis parameter, the bottom resistance
coefficient, the water depth, the atmospheric
pressure divided by the mean water density,
the kinematic stresses in x and y direction at
surface. (the wind stress divided by the mean
water density). The subscripts indicate the
derivatives

To begin with, an intervening region is put
between the two shelves, that is, the shelf 1,
intervening region and shelf 2 are placed,
respectively, in -B,<x€0, in 0&x{L . in
L x¢(B,. At the coasts, no—flux boundary
conditions are applied at x=-B,, B,, where
the depth is three times the Ekman layer e-

folding scale (Mitchum and Clarke, 1986).
That is, the depth integrated offshore velocity
component vanishes at a distance from the
coast. Also, ‘continuous pressure’ and

‘continuous transverse velocity boundary
conditions are applied at x=0, Lm. The ap-
plied boundary conditions are summarized as

follows :

Pt (r/h)ph+fP"=fY/h, at x=-B, (-1

P,=P_, at x=0 (2-2)
P tfP =Poa+Po. at x=0 (2-3)
P =P, at x=L (24
PogtPuy=Pp+ Py, at x=L, @5

P+ (t/h)p,, +{P, =fY/h, at x=B, 2-6)

Dispersion Relation

Fig.1 shows a schematic representation of
the coordinate system and the geometry of
two shelves(l and 2) of exponential depth
profile and a level intervening region, For
convinence, let's take the positive x direction
eastward, Then, the positive y direction is
northward., The bottom topography (H) can

be set as

H, = Hexp(2bx), -B,<x<0 in shelf 1
H()| B, =H =H, 0<x<L_ in middle area 3
H, =Hsexp(-2d{x-L_}) L <x<B, in shelf2

where b and d are the bottom slope
coefficients of shelves 1 and 2.

In order to compare this result with those of
existing theories, the horizontal divergence and
bottom friction are not included here. The

equation (1) is reduced for non-divergent, low
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northward

Hi(x)=Hoexp{(2bx)

Fig. 1. Schematic representation of the coor-
dinate system and geometry of two
sheives of exponential depth profile
and a level intervening region. The
coordinates x, y, and z refer to the
cross-shelf, alongshore, and vertical
directions and are oriented eastward,
northward, and upward, respectively.

-frequency long free waves in a frictionless
barotropic flow as follows :

Hp_ +Hp,+Hp +fHp =0 4

Upon substituting for the pressure, p=F (x)
exp (i{ly+et}), 4) yields

HF" +HF-*HF + ({/c)HF=0 ®)

where the ‘prime’ means the derivative with
respect to x and c=w/¢. (5) with the depth
profiles given by (3) yields the following eigen
value problems for the frictionless

eigenfunction F(x) :

—~4]-

Hz (x)=Hoexp(-2d x-Lm))

F,” +2bF,+ (2bf/c-¢*)F,=0, -B,<x<0 6-1
F . "-1’F,=0, 0<x<L_ 6-2)
F,"-2dF,- (2df/c+ ¢*)F,=0, L _<x<B, 6-3)

F/'+ (f/c)F,=0, at x=-B, (7-1)

(7-4)

F,=F%<, at x=0 (7-2
F,/=F<, at x=0 (7-3
F_=F,, at x=Ls  (7-9)
F '=F, at x=L_  (7-5)

F)/+ (f/c)F,=0, at x=B, (7-6)
where F,, F, and F,; represent the eigen-
functions over, respectively, the shelf 1,
intervening region and shelf 2. From (6) and
(7). we get the following dispersion relation
with b, d, B,, B;, and Lm as parameters :

(nb+2) (n~d+8) exp(~¢L_) exp(n,B)

exp (-my (B,-L )

+ (-n,-b+ ) (n,+d-8) exp(-¢L ) exp(n,B)
exp (+n,: (B,-L})

-(n,~b+¢) (n,-d+2) exp (-le) exp (-n,B,)
exp (-n, (By-L )

=(n,~b+#) (n,+d-2)
exp(+n,(B,-L})

-(n,+b+¢) (-n,+d+¢) exp (L) exp(n,By)
exp (-m: (B,-L_})

-{n,+b+¢) (-n,~d-2) exp(fL)) exp(n,B)
exp (+n, {B,-L_))

+{n,+b+¢) (-m+d+4) exp(L ) exp(-n,B))
exp (-n, (Bz_Lm) )

+ (-ny+b+¢) (-n,~d-2) exp(¢L_) exp(-n,B)
exp(+n,{B,-L_)})

=0 ®

exp (-”Lm) exp (-n,B)

where n,= (b*-(2bf/c-¢?)) 172 9-1)
n,=(d*+ (2bf/c+ ¢%}] 172 (9-2)
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Phase Speed

In order to have non-trivial solution, n, or
n, must be imaginary. When n, is imaginary,
b*-2bf/c+ ¢*{0. The frequency w must obey,
for a positive wave number, the inequalty, 0
{w/f{2be¢/(b*+ £*) . The phase speed c is thus
positive in the Northern Hemisphere, which
implies a southward propagation of waves, In
the above inequality, w/f goes to zero as £
goes both to zero and to infinity. Thus each
shelf wave mode has a zero group velocity at
some intermediate value of ¢, Similarly,
imaginary n, provides the inequality, -2d¢/(d*
+ ¢%){w/f{0. This gives a negative ¢ which
implies northward phase propagation. For
fixed values of the parameters, we can thus
find the real solution o  (¢), m (shelf)=1
and 2, n (mode)=1, 2,---, of the dispersion
relation (10). The solutions can be ordered,

for a fixed wave number, as

-2d ¢/ (d*+ £%) {@n/Flwr/f{we /£ 0
"'wxs/f<‘"u/f>wu/f<2bl/ (bl‘f’ gz) .

The lower the mode, the larger the absolute
phase speed. Thus, one set of waves

propagates northward and the other

propagates southward, These are comparable
to the trench waves (Mysak et al,, 1979,
1981) and bank waves (Brink, 1983).

When L goes to infinity, the equation 8)
vieds the dispersion relations for two
independent shelf waves, Each of the two
dispersion relations is exactly the same as one
obtained by Buchwald and Adams (1968) for a
single shelf adjacent to a deep ocean region
of constant depth.

In the case without a central region, the '
dispersion relation (8) shows the dependence
of the waves on the bottom topography of
both shelves, It shows the constraint of the
topography of one shelf on the propagtion
characteristics of the shelf waves over the
other.

Fig.2 and show the phase speeds of the
first 10 modes in the two sets of shelf waves,
One set is propagating southward along the
shelf 1 and the other set is propagating
northward along the shelf 2, The shelf widths
used in this calculation are 400im for shelf 1

PHASE SPEED (M/SEC)

i 2 3 a 5 6 7 8 9 10
MODE

Fig.2. Phase speeds of the first 10 modes of
shelf waves propagating southward.
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Fig.3. Phase speeds of the first 10 modes of
shelf waves propagating northward.
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and 80kn for shelf 2 as in Fig. 4. The first
mode has the maximum phase speed and
thereafter the phase speed decreases in higher
mode. Since the phase speed of shelf waves
is in some way propotional to shelf width, the
phase speed of the southward propagating
waves is larger than that of the northward

propagating waves,

northward
y

I‘ eastward

Hi{x)=Hoexp(2bx)  Ha(x)=Hoexp(-2dx)

Fig. 4. Schematic representation of the coor-
dinate system and geometry of a
exponential double shelf topography.
The shelf widths are 400km for shelf 1
and 40km for shelf 2.

Eigenfunctions

The eigenfuntions for a eigenvalue problem

6)-(7) are as follows :

F=F, in shelf 1
[Fm in a middle area

F, in shelf 2

F.=adl expQ@Ly) - (n+bl)a2- exp(-ALy) - (n,+b2)
! a2 exp(-aL,) - (n,+b2)

AMPLITUDE

n, * coshn, (x+L;) + (b-%) - sinhn, (x+L,)
n, - coshniL,+ (b-1) - sinhnL, '

Xexp (-bx)

F =A2l exp(-2x) - (n,+bl) +a2 - expix - (n,+b2)
m 8.2 . (n|+83 b tanhnll’l)

- (n,+cl) +al - exp(-2L;) - (n,+c2)
al - exp{L) - (n,+cl)

n, - coshn, (Lux) + (d+-1) - sinhn, @Ls-x)
n, - coshn, (L-L) + (d+ 1) - sinhin, @g-La)

F1=A32 - exp (AL,)

X exp (-dx)

where al=2+1/c, a2=1-1/c, a3=b+2, bl=
(d+2)tanhn, (L_-L,), b2=(d-3)tanhn,({L_-L,),
cl= (b+2)tanhn,L,, c2=(b-3)tanhn,L,. A and
2 are, respectively, a arbitrary constant and
the Rossby Deformation Radius.

Fig.5 shows the amplitudes of the first 2
eigenfunctions across the shelves in two sets
of shelf waves. The first eigenfunction has 1
node across the shelf and the next mode has
2 nodes and so on. It should be noted that,
the first
mode does not have any node (Clarke and

in the case of single shelf case,

a)

2ND CSW MODE

t1ST CSW MODE

b (8)

P

2ND CSW MODE

IST CSW MODE

-200 0

-400 g0
DISTANCE (Km)
Fig.5. The amplitudes of the first 2

eigenfunctions of (A) shelf waves
propagating northward and (B) shelf
waves propagating southward. The
shelf widths are 400km for shelf 1 and
40km for shelf 2.
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VanGoder, 1986). The southward (northward)
propagating waves oscillate over the shelf 1
(shelf 2) and extend in an exponentially decay
over the shelf 2 (shelf 1),

Conclusion

(1) A double shelf topography allows the
existence of two sets of waves propagating in
opposite directions. In the case that two
shelves are apart sufficiently enough, the
solutions show two independent sets of
waves, However, in a double shelf case in
which two shelves are adjoining each other,
the waves become dependent on the geometry
of both shelves,

(2) Even over a double shelf topography,
shelf waves propagate with the shallow water
to the right in the Northern Hemisphere,
However, the group velocity of shelf wave
has the same direction as phase velocity in
the long wave case, but the opposite direction
in the short wave case, Thus, the each shelf
mode has a zero group velocity at some
intermediate value of wave length.

(3) The first eigenfunction over a double
shelf topography has 1 node, while the first
mode over a single shelf topography does not
have any node, The amplitude of shelf waves
oscillate over one shelf and extend in an
exponentially decay over the other shelf,
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