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L. Introduction and Definition

In [1] J.M. Howie has induced the definition of
group by the property of semigorup. In {2] T.K. Dut-
ta has studied the relative ideals in group.

Now the object of this paper is to study proper-
ties of group as a semigroup.

Definition (1-1). We shall say that (S,-) is a semigroup
if (xy)z=y(yz) for any s,y,zES.

Definition (1-2). If a semigroup (S,-) has the additional
property that xy =yx for any x,y,x €S, it is called
a commutative semigroup.

Definition (1-3). If a semigroup (S,-) has an element
1 such that x1 = 1x=x for any x€ES, 1 is called an
identity (element) of S and S is called a semigroup
with identity, or monoid.

Definition (1-4). If A and B are subsets of a semigroup
S, we write AB={ab: agA, beB } and {a}
B=aB={ab:b&B} for aES.

Definition (1-5). If (S,-) is a semigroup, then a
nonempty subset T of S is called a subsemigroup of
S if xyeT for any x,yeT.

Definition (1-6).A nonempty subset I of a semigroup
S is called a left ideal is SI <1, a right ideal if ISCI,
and a (two-sided) ideal if it is both a left and a right
ideal.

Remark (1-7). Every ideal (whether one- or two-sided)
is a subsemigroup, but not every subsemigroup is an
ideal.

Counter-example). Let S be a semigroup
with identity. Then {1} isa subsemigroup of S. But
s{1}=S¢{1}. Hence {1} is not an ideal.
Definition (1-8). An ideal I of S such that {0}CICS
(strictly) is called a proper ideal.

Definition (1-9). A ring such that a?=a for all ac R
is called a Boolean ring.

Example (1-10). Let S be the set of all subsets of some
fixed set U. For A,B S, define A +B= (A-B)y (B-
A) and AB=ANB. Then S is a Boolean ring.

II. The Properties of a Group is a Semigroup

Proposition (2-1). Let S be a semigroup. S is a group
iff complement of every ideal (both left and right) is
also an ideal.

Proof: Suppose that I is an ideal of S and x belongs
to S-I. Now we must show that tx and xt belong to
S-I for any t €S. Here if tx €S-1, then titx)=xel,
which is a contradiction. So txeS-1 and xte S-1.
Conversely, suppose that I is an ideal. Then S-I is
an ideal of S. Let t€Sand i€ 1. Then ti€l and ti
€ S-I since S-I is an ideal of S. Thus S has no any
proper ideal. That is, S=Sa=aS for any for any
a€ S since Sa is a left ideal and aS is a right ideal.
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HereJ ecS D ac=aand 3 e'€S-3-e'a=afor any ‘

a S.Thuse=e'e=e’and ae=ea=a. Thatis, eis
a unique identity in S. Since e €S and aS=Sa =S for
any a€S, so1 a,, 8,&5->¢=aa,,ande= a,a for any
a €S. Thus a,e =a,aa, =ea,. Hence a, =a,=a™ isa
unique inverse of a.

Proposition (2-2). Let S be a semigroup. S is a group
if the difference A-B of two ideals is an ideal (assum-
ing that ¢ is an ideal).

Proof: Let s€S and ac A-B where A, B are ideals.
Then sa€ A since A is an ideal,but sag&B. (if sa€B,
then s'! sa=acB). By similary method asA-B.
" Hence A-B is an ideal in S. Conversely, consider S
and A which is any ideal of S. Then S-A is an ideal.

Let s€S-A and ac A. Then sacA and saES-A.

Thus S has no proper ideal. Hence we can hold the

proof (by proposition 2.1).

Definition (2-3). I(S) is the set of all ideals of a

semigroup S, 1.(S) is the sev of all left ideals of S

and Ix(S) is the set of all right ideals of S.

P.(S) is the set of all left ideals such that sag A
imply a€ A for any s€S, Px(S) is the set of all right
ideals such that asc A imply ac A for any s€ S and
P#(S) is the set of all ideals such that sac A imply
acA and asc A imply a€ A for any s€S.
Proposition (2-4). If a semigroup S is a group,
then 1,(S)=P.(S) and 1(S) = P(S). Furthermore S
is a group iff 1,(S) =.Ps(S).

Proof: (1) Evidently 1,(S) 2P.(S). Let L be a left ideal

-and ta€L for any t€S. Then (t"*)ta=ac L. Thus

L& P.(S). Hence 1.(S) =P.(S). And Ix(S) = Px(S) (by

similary method).

(2) Evidently, P»(S)C 14(S). Let A€ 15(S) and let
at€ A and tac€ A for any t€S. Then (at)t™' =acA
and (1")ta=ac A. Hence 1(S) =Ps(S). Conversely,
let A be an ideal. Then we must show that S-A is
an ideal (by Proposition 2.1). Letac S-A and t€S.
Then tacS-A and at€ S-A (if tac A and atEA,
a€A). Thus S-A is an ideal. Hence we can hold the
proof.

Proposition (2-5). Let S be a monoid and let M,(S)
be the set of all ideals of S which contain an iden-
tity. Then My(S) is a monoid with zero and
M,(S)={S}.

Proof: Define an operation by the definition 1.4.
Then (AB)C = A(BC) for A,B,C M,(S). Here
S(AB)=(SA)BCAB and (AB)S=A(BS)CAB
and 1€ AB since 1€EA, 1€B and AB={ab :
acA, bEB}. Thus ABEM,(S). And SAC A and
ASCA. Since S has an identity, so SAD A and
ASDA. Thus SA=AS=A thatis, S is an identi-
ty in M(S). Hence M,(S) is a monoid. Further-
more AS=SA =8 since A has an identity. Thus
S is a zero in M,(S) and M,(S)={S}.

Proposition (2-6). Let T be a subgroup of a monoid
M. Then P = {Tm : m&M} is a partition of M.

Proof: Let mEM. Then m € Tm and M =mLeJMTm. If
xe TmNTh, then3 t,, t,€T-3-x=t,m and
x=t,n. Here m=t7' (;n)= (t',l t;)n  and
Tm=T(t;" t;)nCTn and TnCTm. Hence Pisa
partition of M.

Definition (2-7). A semigroup S will be called left
(right) simple iff S is the only left (right) ideal of
S. A semigroup S which is both left and right sim-
ple is called simple.

Definition (2-8). (a, b)e £ iff Sa=Sb, (a, b)€ R iff
aS=>bS for a monoid S.

Proposition (2-9). A monoid S is left simple iff £ =
Sx S.

Proof: Let S be left simple and let ac S. Then sacSa
and §(Sa)= (SS)a =Sa s a left ideal. Thus S=Sa
and Sa=Sb for any a, bES. Hence SxS=£.
Conversely, since Sa=Sb for any a, beSand S
has an identity, so S = Sa for any ac S. Let A be
aleftideal of Sand a€ACS. Then S=SaCACS
and S=A. Thus S contains no proper left ideal.
Hence we can hold the proof.

Corollary (2-10). A monoid S is right simple iff
R= SxS.

Proposition (2-11). A semigroup S will be a group iff
it is simple.

Proof: If x€S, thenx=aa"'x aSandx=xa"a€E€Sa.
And aSCS and SaCS for any acS. Thus S=Sa
and aS=S for any acS. Let L be a left ideal of
Sandlet meLCS. Then S=SmCLCS. Thus S
contains no proper left ideal. And S also contains
no proper right ideal (by the similary method).
Hence S is simple. Conversely, let S be simple.
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Then S is left and right simple. If S is left simple
and a€S, then sacSa for any s€S. Since
$(Sa)< Sa, so Sa is a left ideal. Thus Sa= S and
aS=S for any a€ S. Hence we can hold the pro-
of by the Proposition 1.1.

Proposition (2-12). P,(S) is a Boolean ring on assum-

ing that ¢& Py(S).

Proof: Let A,BEP,(S). Then A-BEPS). For if

a € A-Band teS then tac A-B and at€ A-
B, since tac B imply a€ B which contradicts
a€A-B. If tac A-B and at€ A-B for any teS
then a €A-B, since a€ B imply ta€ B and at €B.
Thus A-BEP(S). And we can easily check that
AUB, ANBEP(S). Hence we can complete the
proof by the Example 1. 10.
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