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1. Introduction and Preliminaries

The concepts of neamess spaces were first

introduced by Herrlich in [7]. It has been
proved to be a useful tool in the classification of
extensions of topological spaces; see for exam-
ples [3], [5] and [8]. Bemly [3], Herrlich
[8], Reed [10] and others have used nearness to
classify the principal T, extensions of a T,
spaces. In [5], Dean generalize Ree’s result to
classify the principal T, extensions of a T,
spaces.

In this paper, we isolate a wide class of
nearness structures, called the nearness structures
with generating collections, that are induced
by T, extensions of a particular type. These
we shall call T, extensions generated by co-
countable open sets. The set of nearness
structures with generating collections com-
patible with a symmetric topological space is a
complete lattice. We show that in any serious
investigation of the lattice of neamess structures
compatible with a T, topological space, these
structures with generating collections will play
a special role. This paper is concluded with
applications; The category of nearness spaces
with generating collections and bijective nearness

preserving maps is bicoreflective in the category
of nearness spaces and bijective nearness pre-
serving maps.

Let X be set and §CP?X and consider the
following axioms;

{N1) If BE tand A corefines B (i.e. for each A€A
there exists BE Bsuch that BCA) then A€§

(N2) If NA# ¢ then AEL

(N3) ¢#t £ P2 X

(N4) If AUB={AUB:A € A BEB }e, then AEL
orBE¢

(NS) If CIEAEE, then AEE. (d$A= Ix€X:{{ x},
A}€E} and clz,\={clEA:A€Al.)

Definition 1.1, (8] (X, §) is called a nearness
space or N-space if and only if § satisfies (N1)-
{N5).

This space was introduced by H. Herrlich (8].

Definition 1.2, If (X, £) and (Y, n) are
N-spaces; then a function fi(X, §) = (Y, n)
is called a nearness preseving map if and only
if AE§ implies that fA)E"

Definition 1.3. Nearness ¢ on X is compatible
with a topology t on X if and only if df (A=A
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for all ACX. (i.e. the given topology is equal to
the topology induced by the nearness structure
£) .
Throughout this paper, for the other defini-
tions, we use the definitions of Bang [1] and
[2] (or the definitions of Herrlich (8] and{7].)

1I. Nearness Structures with Generating
Collections.

Definition 2.1, Let (X, t) be a T; topological
space, Let A, DCX and A, D GPX. Let1be a
set and D ,CPX for each i€ . Define;

(1) ED)={ASPX: NA=N{A:AEA}#$IU{AC
PX:AND has uncountable elements of X
for each AEA}

(2) &(L)={A CPX:NAHFSIU{ACPX:for each AEA,

there exists DE Dsuch that AND has
uncountable elements of X}.

(3) &[D] ={ACPX:NA#APIU{ACPX:there exist
DED such that AND has uncountable
elements of X for each AEA}

(4 {D; :i€l}) ={ACPX:NA#¢}U {ACPX:
there exists i€l such that for each AEA
there exists DED; such that AND has
uncountable elements of X} .

Remarx 2.2. We can rewrite each of the
notations in Definition 2.1 as follows;

(1) £D)=t({ {D1}1={}} and D;={D}})
(2) ¥D)=¥({ {Dy}:I={1}and Dy={D})
(3) £IDj=8{{D.}:1=Dand Dc=D})

And we have that ([D]=U{¥(D):DED and
t({Dy:El})=u{Eg(Dp:i€l} .

Tueorem 2.3. Let (X,t) be a Ty topological
space. Let I be a set and D;CPX for each €],
Then §=¥({Dy:i€l}) is a neamess structure
compatible with T, topology t. And hence
#(D), £(D) and §[D] are also nearness structures
compatible with t.

Proof. (N1) If BEE and A corefines B, then
case 1) if NB#9$ then NA#$ by definition of
corefineness, and hence AEE, case 2) if there
exists i€l such that for each BEB there exists
DED, such that BND has uncountable elements
of X, then for each AEA, there exists a BEB s-
uch that BCA because A corefines B. Hence there
exists i€l such that for each A€ A, there exist
above given DED; and BEB such that ANDDBND
‘Therefore AND has also uncountable elements

of X, ie. A€

(N2), (N3) are trivially satisfied.

(N4) Suppose A¢t and BZf. Then NAvB=¢
And for each i€l there exists AEA and BEB
such that AND and BND has countable elements
of X for all DED;. Hence (AUB)YD=(AND)
U (BND) has countable elements of X for all
DED;, Thus AVBZ§.

_(Ns) For any ACX and XEA, we have {x}
C{x}NA. Then {{x}, A}EE and x&cl.A. Hence
KCclsA. Conversely, if xE‘clEA, then {{x}, A}
€. Since {x}ND is countable for each DCX,
(because (X, t) is T, space), it follows that xin
A#g. Hence x€A and clg A=A for all ACX. Sup-
pose that clEAE £ If ﬂc'l?A#, then since cl A=
A, NA#Y. Hence AEE. And if there existsi€l
such that for each CIEAG"‘EA’ there exists
DED; such that cleAND has uncountable ele-
ments of X, then there exists the i€l such that
for each AEA there exists DED; such that AND=
cltAnD has uncountable elements of X. Hence
AEE. Moreover, the fact that § is compatible
with t is shown in the proof of (N5).

Definition 2.4. The given ¢ in Theorem 2.3
is called compatible (with t) nearness structure
on X with generating collection {D;:i€I}.

Theorem 2.5. For any Tl topological space
(X, t), the set S={:k is a compatible nearness
structure on X with generating collection} is a
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complete lattice with respect to inclusion,
Especially
(1) The discrete neamess ¥#)={APX:NA#¢}
is the smallest compatible nearness structure on
X with generating collection.
(2) The indiscrete nearness §(X)=&(¢)U{ACPX:
A has uncountable elements of X for each AEA}
is the largest compatible nearness structure on
on X with generating collection.
(3) If Q@ = {§i€l, Ei is a compatible nearness
structures on X with generating collection} C §,
inf§2=N kandsup =V &,

iel iel

Proof. The proof is evident.

Definition 2.6. Let (X,t) be a T, topological
space. Let D, ECX, and DCPX. Define
(1) A(D) = {ACX : AND has uncountable ele-
ments of X }
(2) A(D) = {ACX : there exists DED such
that AND has uncountable elements of X }
3) Ap = {ACX:pEA }
(4) D<E if U is open and E—U is countable then
D-U is countable
(5) D ~ E provided D<E and E<D.

Proposition 2.7. Let (X,t) be a T, topological
space. Then
(1) A(D),A(D) and A ; are stacks.
(2) If X and D have uncountable elements,
A(D) and A_ are grills, but not filters in general,
(3) &(D)isconcrete.

Proof. (1) Since AD) C stack A(D), let BE
stack A(D). Then there exists AEA(D)such that
ACB. Hence ANDCBND and BMD has un-
countable elements of X. Therefore BEJA(D).
Hence A(D) = stack A(D). For A(D) and Ap
the proofs are similar.

(2) Since any finite subset FCX is not con-
tained in A(D), A(D)# PX. And A(D)#¢ since
XEA(D). Now, if AUBEA(D), then AUBND=
(AND)YU(BND) has uncountable element of X.
Hence AND or BND has uncount ole elements
of X. That is, AEA(D)or BEA(D). Conversely,

if AEA(D) or BEA(D), it is trivial that AUBEA(D).
Hence A(D) is a grill. Similarly A is a grill.
Next, consider the real space (X, t) with
Euclidean topology t. Let” A be positive
rationals and B be negative rationals and
D be irrationals. Then A(D) is not a filter, since
A,BEA(D) but ANB=¢$ZA(D). ForA_ Consider
A=(—=, p), B(p, =) in (X, t). Then we have
thatA_ is not a filter.
3) Tﬁe clusters are A ={ACX:pEA}for pEX
and A(D). 1f DEg(D), then ND#$ or AND has
uncountable elements of X for each AeD In
case ND#¢, there exists some pEND and we
have DCAp  In other case, DCA(D). Hence
£(D) is concrete.

Proposition 2.8. For T, topological space
(X, t),we have
(1) D<E if and only if A(D)CA (E).
(2) A(D)CA(E) implies §D)CE(E).
(3) If £&D)<&E)nd NA(D)=¢ then A(D)CA(E).

Proof. (1) Suppose D<E and let A€A (D).
Suppose AsZA(E). Then ANE has countable
elements of X. Let UsX—A. Then E-U=
ENUC=ENA has countable elements of X.
Since D<E, it follows that D—-U is countable
but this is contradict to AEA(D). HenceA(D)
CA(E). Conversely, suppose A(D)CA(E) and let
Uet with E—U countable, Suppose D—U has
uncountable elements of X. Let A=X-U.
Then AND=ANDX-U)MD=(XNUS)D= Uc
ND=D-U has uncountable elements of X. Hence
AEA(D)CA(E). But ENA=ENA=ENUCE—U has
countable elements of X. This is contradict.
Therefore D<E.

(2) If DEYD), then ND#$ or AND has un-
countable elements of X for each A€b If
ND#p,then DEKE). In the other case, DT
A(D). Hence DCA(E) by assumption. Hence
ANE has uncountable -elements of X for each
AED. Hence DCHE).

(3) For any AEA(D), AND has uncountable
elements of X. Then A(D)EE(D)E(E). Since
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OED)=¢, ANE has uncountable elements of X
for each A€A(D). Therefore AEA(E) and A(D)
CA(E).

Defiiition 2.9. Let (X, t)be a T; topological
space. Let C, DCPX, and C;CPX for each i€l
and D; CPX for each j€J. Define

(1) C is called concrete provided C, DEC and
C<D implies C~D.

(2) C<D if for each CEC, there exists DcCD
such that if U is open and D—U has countable
elements of X for DED. then C-U has coun-
table elements of X.

(3) C~D provided C<D and D<C

@) {ciiel} < {Dj:jGJ} if i€l and AC
A(C;)then there exists j€J withACAU_?j).

(5) {cy:El} ~ {DijEJ} if {Ci:EI}<{Dj:j€J}
and {Dj:j€1}<{ci:EI}.

(6) {C:i€N} is called concrete provided €I,
j€J and C|<Cj irnpliesCi‘~Cj.

Proposition 2,10, For T; topological space
(X, t), we have
(1) C<D if and only if A(C)<A(D).
(2) A(C)CA(D) implies HC)C ¥D).
(3) If HC)CED) and NA(C)=¢, then A(C)C
A(D).

Proof. (1) Suppose C<D. Let AEA(C).
Then there exists CEC such that ANC has un-
countable elements of X. Suppose AND has
countable elements of X for each DEDe. Then
U=X-A is open and D-U=DNUS=DNA has
countable elements of X for each DED(. Hence
C—U has countable elements of X. But C-U=
CNUC=CNA has uncountable elements of X.
This is a contradiction. Therefore A(C)CA(D).
Conversely, suppose A(C)CA(D). Let CEC.
Suppose C has uncountable elements of X.
(If C has countable elements, then it is trivial.)
Put A(C)={ACX: ANC has uncountable ele-
ments of X} and Dc={D:DED, there exists
AEA(C)with AND has uncountable elements of

X}. Let U be open set such that D—U has
countable elements for each DEDG.  Suppose
C—U has uncountable elements., Let A=X-—U.,
Then A€A(C) since ANC=ANC=UNC=C—U
has uncountable elements. And since A(C)C
A(D), there exists DED with AND uncountable,
Then AND=(X-U)ND=UcND=D-U has un-
countable elements, But D—U has countable
elements, we have a contradiction. Therefore
C<D.

(2) Since HC)=£($)U{ACPX:ACA(C), we have
that A(C)<A (D) implies #(C)TE(D).

(3) If AEA(C), there exists CEC such that
ANC has uncountable elements of X. Then
A(CE EC)CHD). Since NA(C)=¢, for each
AEA(C), there exists DED such that AND has
uncountable elements of X. Therefore ASA(D)
and A(C)CA (D).

Proposition 2.11. Let (X, t) be T, topolo-
gical space. Then
(1) &D) is concrete nearness structure for
DCPX
(2) If D is concrete collection in the sense of
definition 2.9(1), then {[D] is also concrete
nearness structure.
(3) £[D] is concrete neamness structure if
and only if there exists a concrete collection
Csuch that ¢[D]=£[C).
(4) If {D;:#€l} is concrete collection then §({ D;:
EI11) is concrete neamness structure.
(5) &(ID;:j€J}) is concrete nearness structure
if and only if there exsits a concrete collection
{C;:i€1} such that £({Dj:jEJ H=¢{C;:€ll).

Proof. (1) D)={ACPX: NA%¢ } U{ACPX: for
each A€A there exists DED such that AND has
uncountable elements of X}=((#V {ACPX:
AcCA(D)}. If D is empty or contains only the
sets which have countable elements, then §(D)=
£(#) and hence is concrete. If D contains an
uncountable set then the clusters in ¥(D) are of
the form A_={ACX:pEA} for pEX or A(D).
Hence for each A€KD), if NA#$ then
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ACA,  for some pENA, and if ACA(D), Ais

contained in a cluster A(D). Hence £(D) is concrete.

(2) Suppose D is concrete. If D is empty or
consists only of the sets which have countable
elements then {[D]= §(¢)and thus is concrete.
If D has the set which have uncountable ele-
ments then the clusters in §{D] are of the
form Ap for pEX orA(D), where DED and D
has uncountable elements of X. Each A€£[D] is
contained in one of these clusters, and thus
£({D] is concrete.

(3) Suppose £[D] is concrete. C={Deb:
A(D) is a cluster in §[D]}. 1f C=¢ then we are
through. Suppose DEC and EEC with D<E.
Then by Proposition 2.8 (1), A(D)EA(E). But
A(D) is a cluster and hence A(D)=A(E). Thus
D~E and C is concrete. If A€E[D] and NA#¢
then AE£[C]. Otherwise, since ¢[D] is concrete,
there exists a cluster of the form A(D) with
ACA(D) and DED. Hence DEC and thusA€E[C].
Therefore §[C]=£[D]. Conversely, if there
exists a concrete collection such that £[D]=
£[C], then [D] is concrete nearness structure
by (2).

(4) Let {D;:i€I} be a concrete collection, Let
t=£{Di:i€1}). The clusters in § are of the form
A, for pEX or A(D)) for ¥l and Dj containing
at least one uncountable subset of X. For,
let D; contain at least one uncountable subset
of X and suppose that A(DI)CA(D )for some D
which containing an uncoum.able subset of X]
Then by Theorem 2.10 (1), D<D Since the
collection {D;:i€I }is concrete, we have that
D;~D. and hence A(DI)—A(D) Thus A(D;) is a
cluster. Hence §({D;:i€l}) is concrete nearness
structure.

(5) If the condition holds then ({Dj:ja}) is
concrete nearness by (4). Conversely, suppose
that E—E({D ;j€J}) is concrete nearness. Let
I={i:E€) and A(D,) is cluster in §}. The cluster
in § are of the formAp for pEX or A(Dy) for
€1, Since § is concrete nearness, it follows
that §({D;:;}€J})=({Cy:€l}).  To see this;
let any A€ E({Dj :j)€J}). Then Ais contained in

some cluster A(C;) for i€l. Hence AGE({Ci;
¥1}) by definition 2.1 (4). Now it suffice to
show that {C;:i€l}is a concrete collection.
Suppose that C ;<C; for i, jEL. Then A(C))CA(C}))
by Theorem 2. 10 (Jl) and since A(Cyisa cluster,
we have A(Cl)—A(C ). Therefore C, i~C; and hence
there exists a concrete collectxon {C;:il} such

that §({ DyEI D =H({Ci€Th.

1. T, -Extensions Generated by Cocountable
Open Sets and Applications.

Definition 3.1. An extension (e, Y, t) of
(X, (X)) is a topological space (Y, t) and a dense
embedding e: X*Y. (e, Y, t) is called strict or
principal extension of (X, t(X)if the collection
{dy(e(A)):A CX} is a base for the closed sets
inY.

We will assume that the embeddings e:X~*Y
are injections and thus not distinguish between
A and e(A) for ACX,

Definition 3.2, For (Y, t) an extension of
X, we define ={unX:yelet} for yE€Y.
My is called the trace filter of y on X.

Definition 3.3. (Y, t) is called Ti-extension
of X generated by cocowntable open sets if for
each yEY—X there exists C,CPX such that
}Jy={UEt(X):C—U has countable elements of X
for each CECy} .

Theorem 3.4. Let (Y, t) be a T, -extension
of X generated by cocountable open sets. Let
yEY-X and ACX. Then yEclyA if and only
if there exists CGCy such that clyANC has
uncountable elements of X.

Proof. Suppose yEclyA. Now pty= {ueyX):
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C—U has countable elements of X for each
CEC,,. Suppose clyANC has countable elements
of X for each Let U=sX—clyA. Then
UEYX) and C-U= cnyc= CNciyA  has
countable elements of X  for each OECy.
Hence UE#), and thus there exists VEt with
yEV and VNX=U. Then VNA= (VNX)NA=UNA
cun cle-¢, which is contradict to yEclYA
Therefore there exists (,EC such that clyANC
has uncountable elements of X. Conversely, if
yZklyA, then there exists VEtwith yEV such
that VNA=¢ Then AOVNX=9, and hence
Ay AQ(VNX)C. Since VNXEn, C—(VNX)
has countable elements of X or each CGC
But C—(VNX)=C(VN Xf OCNcly A; uncount-
able, which is impossible. Hence yEClyA.

Example 3.5. The reals can be constructed
as a T, -extension of its subspace generated by
cocountable open sets.

Proof. Let R be the set of reals and S=R—
{0}. Let t be a topology on R such that t=
{GCR: either 0&ZG or if 0EG then R—G has
countable elements of reals}. Then (R;t) is a
T, -extension of (S,t(S)) using identity embed-
ding. Put C={S}. p,={UEYS):S-U has
countable elements of S for any SEC ;. Hence
(R, t) is a T, -extension of (S,(S)) generated by
cocountable open sets.

Theorem 3.6. Let (X;t) be a T, topological
space and Y=XU{y} withy&X. If ((Y)=tu
{ U u{y} :U€t and Y—U has countable elements
of Y}, then (Y, t(Y)) is an one point extension
of X generated by cocountable open sets.

Proof. For any x€X, take UEt(X) with x€U.
The yZU. Since (X, t)is T, space, X—{x}€t(X).
Hence (X—{x})U{y}€t(Y). Hence (Y, (Y))
is T, space. It suffices to show that (Y, t(Y)) is
an one point extension of X generated by co-
countable open sets. For the trace filter of
YEY-Xon X, #,= {VNX:y&VEL(Y)} = fUEL(X):

Y-U has countable elements of Y}= {UEt(X): ,
X—-U has countable elements of X}, there
exists Cy={X}CPX such that '# ={Uey(X):
C—U has countable elements of X for each
OECy={X} }. The proof is completed.

Theorem 3.7. Let (Y,t) be a T, -extension
of X. Set §={DCPX:NclyD##}. Then Y is
an extension of X generated by cocountable
open sets if and only if § is a compatible nearness
structure with generating collection.

Proof. Suppose Y is a T, -extension of X
generated by cocountable open sets. Then for
each yEY-X, there exists CyCPX such that
#y={UEYX):C—-U has countable elements of X
for each CEC,}. Let I=Y-X and n=t({C,:
yeID. It sufty ices to show that é=n. Let DQ
Then there exists yENclyD. If yEX then
NclyD+#$ and DEn. If yEY-X, then yEclyD
for each DED. Then by Theorem 3.4, there
exists CEC, such that clyDNC has uncountable
elements o{ X. Hence DEn. On the other hand
suppose DEn. If clyD#$ then NclyD+#9 and
DEE  Otherwise, there exists Cy such that for
each DED there exists OEC,, such that clxDNC
has uncountable elements” of X. Then by
Theorem 3.4, yEclyD for each DED and thus

Conversely, suppose § is a compatible nearness
structure with generating collection. Let y§Y—X
and let #y={UﬂX:y€UEt} be the trace filter,
Consider Dy={DCX:y€clyD}. Then D)Ef.
Hence there exists CCPX such that Dy =ACX:
there exists CEC such that clxDNC has un-
countable elements of X} since NclyD, =g
It suffices to show that the given trace filter
Ky is equal to {UEL(X):C—U has countable
elements of X for each CEC}=vy. Let UEg,,.
Then there exists VEt such that U=VNX and
YEV. Suppose there exists OEC such that C-U
has uncountable elements of X. Let D=C-U.
Since cyDNC=cly(C—U)C has uncountable
elements of X, DEDy and thus yEclyD. But
this is impossible. Hence C—U has countable
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elements of X for each CEC. Thus #yC vy
On the other hand, let UE Vy. Now there exusts
SEt such that SNX=U- Suppose there exists
VEt such that yEV and VNXCU. Then yE€S
WVEtL and (SUV)NX=U and UEZ Now
suppose for each VEt with YEV, we have that
VNXEU. Let va(Vr'\X)—U. Set D={x,: for
yEVEL}., Then yEclyD and lEl)y. Hence

there exists CEC such that clxDﬁC has un-

countavle elements of X. But DNU=¢ implies
dyDNU= ¢ Since UE by implies C—U has count-
able elements of X, which is contradict to the
fact that C—UXCNeclxD)-U=(CNclyD)UD
(CNelyD)NelxD=CNclxD; uncountable. Hence
UE#y and thus By= vy
extension of X generated by cocountable open
sets.

Lemma 3.8. Let (X,t) be a T; nearness space.
Set £'=U{n:n is a compatible nearness structure
on X with generating collection and n<l.
Then £’Ct and &' is a compatible nearness struc-
ture with generating collection.

Tneorem 3.9. The category of T; nearness
spaces with generating collections and bijective
nearness preserving maps is bicoreflective in
the category of T; nearness spaces and bijective
nearness preserving maps. The coreflection is

given by i:(X, §)(X, ).
Proof. Consider the following diagram:
X8 i (X

f 2

,n)

where f is a one-to-one and onto nearness pre-
serving map, (Y, 1) is a nearness space with
generating collection and g(y)=f(y) for each
yEY. Then g must be unique. Hence it suffices

to show that g is a nearness preserving map.

Therefore Y is T, -

LetAEn. If Ncly(fA)#*¢ then IA)EE". Suppose
Nely(fA)). Then NclyA=p, and since 7 is
compatible neamess structure with generating
collection, there exists a generating collection
CEPY such that for each A€A, there exists

CEC such that cly ANC has uncountable ele-
ments of Y. Since Y is T, space, each AGA
has uncountable elements of Y. Let D={C:
CEC and C has uncountable elements of Y}.
Then DEn and f(D)EE. Then g(A(D)<E’. To
see this, note that each f(D) has uncountable

elements of X for each DED since f is one-to- *

one. Let BEE(AD)). If NclyB#4 then BEE.
Suppose NclyB=¢. Then, for each BEB there
exists DED such that cly BNf(D) has uncountable
elements of X. Since X is T; space, B has
uncountable elements of X and f-'(B) has
uncountable elements of Y since f is an onto
mapping.  Similarly f'(clyBNf(D)) has un-
countable elements of Y, and fl(clyBNAD))=
£ (clyB)Nf* (D))= (clyB)ND since f is one-
toone.  Hence {f"(clyB):BEB}En, and thus
{chB:BeB}= if(f- (clyB):BEB}EE, and thus
BE¢ since f is a nearness preserving map. Hence
EA(D))ct’. We claim that fIA)EE((D)). For,
let AEA As previously noted, A has uncountable
elements of Y and there exists CED such that
cly ANC has uncountable elements of Y. Then
f(clyAﬂC)Cf(clYA)ﬁt(C)Cclx(f(A))ﬂf(C).

Now f(clyANC) has uncountable elements
of X since f is one-to-one. Thus cly(fA)N
f{C) has uncountable elements of X for each
A€A and RAEE(D)). Now g(A)=RA)EE'. Thus

g is a nearness preserving map.
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