On Nearness Structures of T_1 Topological Spaces

Song Seok-zun

T, 位相空間의 Nearness 構造에 관하여

宋錫準

I. Introduction and Preliminaries

The concepts of nearness spaces were first introduced by Herrlich in [7]. It has been proved to be a useful tool in the classification of extensions of topological spaces; see for examples [3], [5] and [8]. Benuly [3], Herrlich [8], Reed [10] and others have used nearness to classify the principal T_1 extensions of a T_1 spaces. In [5], Dean generalize Ree's result to classify the principal T_0 extensions of a T_0 spaces.

In this paper, we isolate a wide class of nearness structures, called the nearness structures with generating collections, that are induced by T_1 extensions of a particular type. These we shall call T₁ extensions generated by cocountable open sets. The set of nearness structures with generating collections compatible with a symmetric topological space is a complete lattice. We show that in any serious investigation of the lattice of nearness structures compatible with a T_1 topological space, these structures with generating collections will play a special role. This paper is concluded with applications; The category of nearness spaces with generating collections and bijective nearness

preserving maps is bicoreflective in the category of nearness spaces and bijective nearness preserving maps.

Let X be set and $\xi \subset P^2 X$ and consider the following axioms;

- (N1) If $B \in \xi$ and A corefines B (i.e. for each $A \in A$ there exists $B \in B$ such that $B \subset A$) then $A \in \xi$
- (N2) If $\cap A \neq \phi$ then $A \in \xi$
- (N3) $\phi \neq \xi \neq P^2 X$
- (N4) If $A \cup B = \{A \cup B : A \in A \ B \in B\} \in \xi$, then $A \in \xi$ or $B \in \xi$
- (N5) If $cl_{\xi}A \in \xi$, then $A \in \xi$. $(cl_{\xi}A = \{x \in X: \{\{x\}, A\} \in \xi\}$ and $cl_{\xi}A = \{cl_{\xi}A: A \in A\}$.)

Definition 1.1. [8] (X, ξ) is called *a nearness space or N-space* if and only if ξ satisfies (N1)-(N5).

This space was introduced by H. Herrlich (8),

Definition 1.2. If (X, ξ) and (Y, η) are N-spaces; then a function $f:(X, \xi) \rightarrow (Y, \eta)$ is called *a nearness prese ving map* if and only if $A \in \xi$ implies that $f(A) \in \eta$.

. Definition 1.3. Nearness ξ on X is compatible with a topology t on X if and only if $cl_{\xi}(A) = \overline{A}$ for all ACX. (i.e. the given topology is equal to the topology induced by the nearness structure ξ .)

Throughout this paper, for the other definitions, we use the definitions of Bang [1] and [2] (or the definitions of Herrlich [8] and [7].)

II. Nearness Structures with Generating Collections.

Definition 2.1. Let (X, t) be a T_1 topological space. Let A, D \subseteq X and A, D \subseteq PX. Let I be a set and D₁ \subseteq PX for each $i \in I$. Define;

- ξ(D)={A⊂PX: ∩Ā=∩{A:A∈A}≠φ}∪{A⊂
 PX:A∩D has uncountable elements of X for each A∈A}
- (2) $\xi(D) = \{A \subset PX : \cap \overline{A} \neq \phi\} \cup \{A \subset PX : \text{for each } A \in A, \text{ there exists } D \in D \text{ such that } \overline{A} \cap D \text{ has uncountable elements of } X\}.$
- (3) ξ[D] = {A ⊂PX:∩Ā≠\$}∪{A⊂PX:there exist D∈D such that A∩D has uncountable elements of X for each A∈A}
- (4) $\xi(\{D_i : i \in I\}) = \{A \subseteq PX : \cap \overline{A} \neq \phi\} \cup \{A \subseteq PX :$ there exists $i \in I$ such that for each $A \in A$ there exists $D \in D_i$ such that $\overline{A} \cap D$ has uncountable elements of X $\}$.

Remark 2.2. We can rewrite each of the notations in Definition 2.1 as follows;

- (1) $\xi(D) = \xi(\{ \{D_1\}, I = \{1\} \text{ and } D_1 = \{D\} \})$
- (2) $\xi(D)=\xi(\{ \{D_1\} : I=\{1\} \text{ and } D_1=\{D\})$
- (3) $\xi[D] = \xi(\{D_c\} : I = D \text{ and } D_C = D\})$

And we have that $\xi[D] = \bigcup \{\xi(D): D \in D \text{ and } \xi(\{D_i: i \in I\}) = \bigcup \{\xi(D_i): i \in I\}$.

Theorem 2.3. Let (X,t) be a T_1 topological space. Let I be a set and $D_i \subseteq PX$ for each $i \in I$. Then $\xi = \xi(\{D_i: i \in I\})$ is a nearness structure compatible with T_1 topology t. And hence $\xi(D), \xi(D)$ and $\xi[D]$ are also nearness structures compatible with t. **Proof.** (N1) If $B \in \xi$ and A corefines B, then case 1) if $\cap \overline{B} \neq \phi$ then $\cap \overline{A} \neq \phi$ by definition of corefineness, and hence $A \in \xi$, case 2) if there exists $i \in I$ such that for each $B \in B$ there exists $D \in D_i$ such that $\overline{B} \cap D$ has uncountable elements of X, then for each $A \in A$, there exists a $B \in B$ such that $B \cap A$ because A corefines B. Hence there exists $i \in I$ such that for each $A \in A$, there exist above given $D \in D_i$ and $B \in B$ such that $\overline{A} \cap D \supset \overline{B} \cap D$ Therefore $\overline{A} \cap D$ has also uncountable elements of X, i.e. $A \in \xi$.

(N2), (N3) are trivially satisfied.

(N4) Suppose $A \notin$ and $B \not\in$ Then $\cap \overline{A \lor B} = \phi$ And for each $i \in I$, there exists $A \in A$ and $B \in B$ such that $\overline{A} \cap D$ and $\overline{B} \cap D$ has countable elements of X for all $D \in D_i$. Hence $(\overline{A \cup B}) \cap D = (\overline{A} \cap D)$ $\cup (\overline{B} \cap D)$ has countable elements of X for all $D \in D_i$. Thus $A \lor B \not\in \xi$.

(N5) For any ACX and $x \in \overline{A}$, we have $\{x\} \subset \overline{\{x\}} \cap \overline{A}$. Then $\{\{x\}, A\} \in \xi$ and $x \in cl_{\xi}A$. Hence $\overline{A} \subseteq cl_{\xi}A$. Conversely, if $x \in cl_{\xi}A$, then $\{\{x\}, A\} \in \xi$. Since $\{\overline{x}\} \cap D$ is countable for each DCX, (because (X, t) is T_1 space), it follows that $\{\overline{x}\} \cap \overline{A} \neq \phi$. Hence $x \in \overline{A}$ and $cl_{\xi}A = \overline{A}$ for all ACX. Suppose that $cl_{\xi}A \in \xi$. If $\cap cl_{\xi}A \neq \phi$, then since $cl_{\xi}A = \overline{A}$, $\cap \overline{A} \neq \phi$. Hence $A \in \xi$. And if there exists $i \in I$ such that for each $cl_{\xi}A \in cl_{\xi}A$, there exists $D \in D_1$ such that $cl_{\xi}A \cap D$ has uncountable elements of X, then there exists the $i \in I$ such that for each $A \in A$ there exists $D \in D_1$ such that $\overline{A} \cap D = cl_{\xi}A \cap D$ has uncountable elements of X. Hence $A \in \xi$. Moreover, the fact that ξ is compatible with t is shown in the proof of (N5).

Definition 2.4. The given ξ in Theorem 2.3 is called compatible (with t) nearness structure on X with generating collection $\{D_i: i \in I\}$.

Theorem 2.5. For any T_1 topological space (X, t), the set $S=\{\xi:\xi \text{ is a compatible nearness structure on X with generating collection}\}$ is a

complete lattice with respect to inclusion. Especially

(1) The discrete nearness $\xi(\phi) = \{A \subseteq X : \cap \overline{A} \neq \phi\}$ is the smallest compatible nearness structure on X with generating collection.

(2) The indiscrete nearness $\xi(X)=\xi(\phi)\cup\{A\subset PX: \overline{A} \text{ has uncountable elements of } X \text{ for each } A \in A\}$ is the largest compatible nearness structure on on X with generating collection.

(3) If $\Omega = \{\xi_i : i \in I, \xi_i \text{ is a compatible nearness} structures on X with generating collection} \} \subseteq S$, inf $\Omega = \bigcap_{i \in I} \xi_i$ and sup $\Omega = \bigcup_{i \in I} \xi_i$.

Proof. The proof is evident.

Definition 2.6. Let (X,t) be a T_1 topological space. Let D, E $\subset X$, and D \subset PX. Define

(1) $A(D) = \{A \subseteq X : \overline{A} \cap D \text{ has uncountable elements of } X \}$

(2) $A(D) = \{A \subseteq X : \text{ there exists } D \in D \text{ such that } \overline{A} \cap D \text{ has uncountable elements of } X \}$

(3) $\mathbf{A}_{\mathbf{p}} = \{\mathbf{A} \subseteq \mathbf{X} : \mathbf{p} \in \overline{\mathbf{A}} \}$

(4) $D \le E$ if U is open and E-U is countable then D-U is countable

(5) $D \sim E$ provided D<E and E<D.

Proposition 2.7. Let (X,t) be a T_1 topological space. Then

(1) A(D), A(D) and A_p are stacks.

(2) If X and D have uncountable elements, A(D) and A_p are grills, but not filters in general. (3) $\xi(D)$ is concrete.

Proof. (1) Since $A(D) \subseteq \text{stack } A(D)$, let $B \in \text{stack } A(D)$. Then there exists $A \in A(D)$ such that $A \subseteq B$. Hence $\overline{A} \cap D \subseteq \overline{B} \cap D$ and $\overline{B} \cap D$ has uncountable elements of X. Therefore $B \in [A(D)$. Hence A(D) = stack A(D). For A(D) and A_p , the proofs are similar.

(2) Since any finite subset $F \subseteq X$ is not contained in A(D), $A(D) \neq PX$. And $A(D) \neq \phi$ since $X \in A(D)$. Now, if $A \cup B \in A(D)$, then $\overline{A \cup B} \cap D =$ $(\overline{A} \cap D) \cup (\overline{B} \cap D)$ has uncountable element of X. Hence $\overline{A} \cap D$ or $\overline{B} \cap D$ has uncount ole elements of X. That is, $A \in A(D)$ or $B \in A(D)$. Conversely, if $A \in A(D)$ or $B \in A(D)$, it is trivial that $A \cup B \in A(D)$. Hence A(D) is a grill. Similarly A_p is a grill. Next, consider the real space (X, t) with Euclidean topology t. Let A be positive rationals and B be negative rationals and D be irrationals. Then A(D) is not a filter, since $A, B \in A(D)$ but $A \cap B = \emptyset \not\in A(D)$. For A_p , Consider $A = (-\infty, p), B = (p, \infty)$ in (X, t). Then we have that A_p is not a filter.

(3) The clusters are $A_p = \{A \subseteq X : p \in \overline{A}\}$ for $p \in X$ and A(D). If $D \in \xi(D)$, then $\cap \overline{D} \neq \phi$ or $\overline{A} \cap D$ has uncountable elements of X for each $A \in D$ In case $\cap \overline{D} \neq \phi$, there exists some $p \in \cap \overline{D}$ and we have $D \subseteq A_p$ In other case, $D \subseteq A(D)$. Hence $\xi(D)$ is concrete.

Proposition 2.8. For T_1 topological space (X, t), we have

(1) D<E if and only if $A(D) \subseteq A(E)$.

(2) $A(D) \subseteq A(E)$ implies $\xi(D) \subseteq \xi(E)$.

(3) If $\xi(D) \subseteq \xi(E)$ and $\bigcap \overline{\mathbf{A}(D)} = \phi$ then $\mathbf{A}(D) \subseteq \mathbf{A}(E)$.

Proof. (1) Suppose $D \le E$ and let $A \in A(D)$. Suppose $A \not\subseteq A(E)$. Then $\overline{A} \cap E$ has countable elements of X. Let $U=X-\overline{A}$. Then E-U= $E \cap U^{C}=E \cap \overline{A}$ has countable elements of X. Since $D \le E$, it follows that D-U is countable but this is contradict to $A \in A(D)$. Hence A(D) $\subset A(E)$. Conversely, suppose $A(D) \subseteq A(E)$ and let $U \in t$ with E-U countable. Suppose D-U has uncountable elements of X. Let A=X-U. Then $\overline{A} \cap D = A \cap D = (X-U) \cap D = (X \cap U^{C}) \cap D = U^{C}$ $\cap D = D - U$ has uncountable elements of X. Hence $A \in A(D) \subseteq A(E)$. But $E \cap \overline{A} = E \cap A = E \cap U^{C} = E - U$ has countable elements of X. This is contradict. Therefore $D \le E$.

(2) If $D \in \xi(D)$, then $\cap \overline{D} \neq \phi$ or $\overline{A} \cap D$ has uncountable elements of X for each $A \in D$ If $\cap \overline{D} \neq \phi$, then $D \in \xi(E)$. In the other case, $D \subset A(D)$. Hence $D \subset A(E)$ by assumption. Hence $\overline{A} \cap E$ has uncountable elements of X for each $A \in D$. Hence $D \subset \xi(E)$.

(3) For any $A \in A(D)$, $\overline{A} \cap D$ has uncountable elements of X. Then $A(D) \in \xi(D) \subset \xi(E)$. Since

 $\cap \mathbf{A}(\mathbf{D}) = \emptyset$, $\overline{\mathbf{A}} \cap \mathbf{E}$ has uncountable elements of X for each $A \in \mathbf{A}(\mathbf{D})$. Therefore $A \in \mathbf{A}(\mathbf{E})$ and $\mathbf{A}(\mathbf{D})$ $\subset \mathbf{A}(\mathbf{E})$.

Definition 2.9. Let (X, t) be a T₁ topological space. Let C, D \square X, and C₁ \square X for each i \in I and D₁ \square X for each j \in J. Define

(1) C is called concrete provided C, $D \in C$ and C<D implies C~D.

(2) $C \le D$ if for each $C \in C$, there exists $D_C \subseteq D$ such that if U is open and D-U has countable elements of X for $D \in D_C$ then C-U has countable elements of X.

(3) $C \sim D$ provided C < D and D < C

(4) $\{C_i: i \in I\} < \{D_j: j \in J\}$ if $i \in I$ and $A \subset A(C_i)$ then there exists $j \in J$ with $A \subset A(D_i)$.

(5) $\{C_i: \notin I\} \sim \{D_i: j \in J\}$ if $\{C_i: \notin I\} < \{D_j: j \in J\}$ and $\{D_i: j \in J\} < \{C_i: \notin I\}$.

(6) $\{C_i: \notin I\}$ is called concrete provided $\notin I$, $j \in J$ and $C_i < C_i$ implies $C_i \sim C_i$.

Proposition 2.10. For T_1 topological space (X, t), we have

(1) C<D if and only if $A(C) \subseteq A(D)$.

(2) $A(C) \subseteq A(D)$ implies $\xi(C) \subseteq \xi(D)$.

(3) If $\xi(C) \subseteq \xi(D)$ and $\cap A(C) = \phi$, then $A(C) \subseteq A(D)$.

(1) Suppose C < D. Proof. Let $A \in A(C)$. Then there exists $C \subseteq C$ such that $\overline{A} \cap C$ has uncountable elements of X. Suppose $\overline{A} \cap D$ has countable elements of X for each $D \in D_{C}$. Then U=X-A is open and D-U=D \cap U^c=D \cap A has countable elements of X for each $D \in D_{C}$. Hence C-U has countable elements of X. But C-U= $C \cap U^{c} = C \cap \overline{A}$ has uncountable elements of X. This is a contradiction. Therefore $A(C) \subseteq A(D)$. Conversely, suppose $A(C) \subseteq A(D)$. Let C∈C. Suppose C has uncountable elements of X. (If C has countable elements, then it is trivial.) Put $A(C) = \{A \subset X: A \cap C \text{ has uncountable ele-} \}$ ments of X } and $D_C = \{D: D \in D, \text{ there exists} \}$ $A \in A(C)$ with $A \cap D$ has uncountable elements of

X}. Let U be open set such that D-U has countable elements for each $D \in D_C$. Suppose C-U has uncountable elements. Let A=X-U. Then $A \in A(C)$ since $\overline{A} \cap C = A \cap C = U^C \cap C = C - U$ has uncountable elements. And since $A(C) \subset A(D)$, there exists $D \in D_C$ with $\overline{A} \cap D$ uncountable. Then $\overline{A} \cap D = (X-U) \cap D = U^C \cap D = D - U$ has uncountable elements. But D-U has countable elements, we have a contradiction. Therefore C < D.

(2) Since $\xi(C) = \xi(\phi) \cup \{A \subset PX: A \subset A(C), we have that A(C) \subset A(D) implies <math>\xi(C) \subset \xi(D)$.

(3) If $A \in A(C)$, there exists $C \in C$ such that $\overline{A} \cap C$ has uncountable elements of X. Then $A(C) \in \xi(C) \subset \xi(D)$. Since $\cap \overline{A(C)} = \phi$, for each $A \in A(C)$, there exists $D \in D$ such that $\overline{A} \cap D$ has uncountable elements of X. Therefore $A \in A(D)$ and $A(C) \subset A(D)$.

Proposition 2.11. Let (X, t) be T_1 topological space. Then

(1) $\xi(D)$ is concrete nearness structure for DGPX

(2) If D is concrete collection in the sense of definition 2.9(1), then $\xi[D]$ is also concrete nearness structure.

(3) $\xi[D]$ is concrete nearness structure if and only if there exists a concrete collection C such that $\xi[D] = \xi[C]$.

(4) If $\{D_i: \notin I\}$ is concrete collection then $\xi(\{D_i: \#I\})$ is concrete nearness structure.

(5) $\xi(\{D_j; j \in J\})$ is concrete nearness structure if and only if there exsits a concrete collection $\{C_i: j \in I\}$ such that $\xi(\{D_i: j \in J\}) = \xi(\{C_i: j \in I\})$.

Proof. (1) $\xi(D)=\{A \subset PX: \cap \overline{A} \neq \phi\} \cup \{A \subset PX: \text{ for } each A \in A \text{ there exists } D \in D \text{ such that } \overline{A} \cap D \text{ has uncountable elements of } X\}=\xi(\phi) \cup \{A \subset PX: A \subset A(D)\}$. If D is empty or contains only the sets which have countable elements, then $\xi(D)=\xi(\phi)$ and hence is concrete. If D contains an uncountable set then the clusters in $\xi(D)$ are of the form $A_p=\{A \subset X: p \in \overline{A}\}$ for $p \in X$ or A(D). Hence for each $A \in \xi(D)$, if $\cap \overline{A} \neq \phi$ then

- 222 -

 $A \subseteq A_p$ for some $p \in \cap \overline{A}$, and if $A \subseteq A(D)$, A is contained in a cluster A(D). Hence $\xi(D)$ is concrete. (2) Suppose **D** is concrete. If **D** is empty or consists only of the sets which have countable elements then $\xi[D] = \xi(\phi)$ and thus is concrete. If **D** has the set which have uncountable elements then the clusters in $\xi[D]$ are of the form A_p for $p \in X$ or A(D), where $D \in D$ and D has uncountable elements of X. Each $A \in \xi[D]$ is contained in one of these clusters, and thus $\xi[D]$ is concrete.

(3) Suppose $\xi[D]$ is concrete. Let C={D \in D: A(D) is a cluster in $\xi[D]$ }. If C= ϕ then we are through. Suppose D \in C and E \in C with D<E. Then by Proposition 2.8 (1), A(D) \in A(E). But A(D) is a cluster and hence A(D)=A(E). Thus D \sim E and C is concrete. If A $\in \xi$![D] and $\cap \overline{A} \neq \phi$ then A $\in \xi$ [C]. Otherwise, since ξ [D] is concrete, there exists a cluster of the form A(D) with A \subset A(D) and D \in D. Hence D \in C and thus A $\in \xi$ [C]. Therefore ξ [C]= ξ [D]. Conversely, if there exists a concrete collection such that ξ [D]= ξ [C], then ξ [D] is concrete nearness structure by (2).

(4) Let $\{D_i:i\in I\}$ be a concrete collection. Let $\xi = \xi \{D_i:i\in I\}$. The clusters in ξ are of the form A_p for $p\in X$ or $A(D_i)$ for $i\in I$ and D_i containing at least one uncountable subset of X. For, let D_i contain at least one uncountable subset of X and suppose that $A(D_i) \subset A(D_j)$ for some D_i which containing an uncountable subset of X. Then by Theorem 2.10 (1), $D_i < D_j$. Since the collection $\{D_i:i\in I\}$ is concrete, we have that $D_i \sim D_j$ and hence $A(D_i) = A(D_j)$. Thus $A(D_i)$ is a cluster. Hence $\xi(\{D_i:i\in I\})$ is concrete nearness structure.

(5) If the condition holds then $\{\{D_j: j \in J\}\}$ is concrete nearness by (4). Conversely, suppose that $\xi = \xi(\{D_j: j \in J\})$ is concrete nearness. Let $I = \{i: i \in J \text{ and } A(D_i) \text{ is cluster in } \xi\}$. The cluster in ξ are of the form A_p for $p \in X$ or $A(D_i)$ for $i \in I$. Since ξ is concrete nearness, it follows that $\xi(\{D_j: j \in J\}) = \xi(\{C_i: i \in I\}\})$. To see this; let any $A \in \xi(\{D_i: j \in J\})$. Then A is contained in some cluster $A(C_i)$ for $i \in I$. Hence $A \in \xi(\{C_i: i \in I\})$ by definition 2.1 (4). Now it suffice to show that $\{C_i: i \in I\}$ is a concrete collection. Suppose that $C_i < C_i$ for i, $j \in I$. Then $A(C_i) \subset A(C_i)$ by Theorem 2.10 (1) and since $A(C_i)$ is a cluster, we have $A(C_i) = A(C_i)$. Therefore $C_i \sim C_i$ and hence there exists a concrete collection $\{C_i: i \in I\}$ such that $\xi(\{D_i: j \in J\}) = \xi(\{C_i: i \in I\})$.

III. T₁ -Extensions Generated by Cocountable Open Sets and Applications.

Definition 3.1. An extension (e, Y, t) of (X, t(X)) is a topological space (Y, t) and a dense embedding $e: X \rightarrow Y$. (e, Y, t) is called *strict or principal extension of* (X, t(X)) if the collection $\{cl_Y(e(A)):A \subseteq X\}$ is a base for the closed sets in Y.

We will assume that the embeddings $e:X \rightarrow Y$ are injections and thus not distinguish between A and e(A) for $A \subset X$.

Definition 3.2. For (Y, t) an extension of X, we define $\mu_y = \{U \cap X: y \in U \in t\}$ for $y \in Y$. μ_v is called the trace filter of y on X.

Definition 3.3. (Y, t) is called T_1 -extension of X generated by cocountable open sets if for each $y \in Y-X$ there exists $C_y \subset PX$ such that $\mu_y = \{U \in t(X): C-U$ has countable elements of X for each $C \in C_y\}$.

Theorem 3.4. Let (Y, t) be a T_1 -extension of X generated by cocountable open sets. Let $y \in Y - X$ and $A \subseteq X$. Then $y \in cl_Y A$ if and only if there exists $C \in C_y$ such that $cl_X A \cap C$ has uncountable elements of X.

Proof. Suppose $y \in cl_Y A$. Now $\mu_y = \{U \in t(X):$

C-U has countable elements of X for each $C \in C_{v}$. Suppose $cl_X A \cap C$ has countable elements of X for each $C \in C_v$. Let $U = X - cl_X A$. Then $U \in t(X)$ and $C - U = C \cap U^{c} = C \cap cl_X A$ has countable elements of X for each $C \in C_v$. Hence $U \in \mu_v$ and thus there exists V∈t with $v \in V$ and $V \cap X = U$. Then $V \cap A = (V \cap X) \cap A = U \cap A$ $\subset U \cap cl_X A = \phi$, which is contradict to $y \in cl_V A$. Therefore there exists $C \in C_v$ such that $cl_X A \cap C$ has uncountable elements of X. Conversely, if $y \not\in cl_V A$, then there exists $V \in t$ with $y \in V$ such that $V \cap A = \phi$ Then $A \cap V \cap X = \phi$. and hence d_YA⊂(V∩X)^c. Since $V \cap X \in \mu_v$, $C = (V \cap X)$ has countable elements of X for each $C \in C_{V}$. But $C - (V \cap X) = C \cap (V \cap X)^{c} \supset C \cap cl_{x} A$; uncountable, which is impossible. Hence $y \in cl_V A$.

Example 3.5. The reals can be constructed as a T_1 -extension of its subspace generated by cocountable open sets.

Proof. Let R be the set of reals and S=R-{0}. Let t be a topology on R such that t= {GCR: either 0 \notin G or if 0 \in G then R-G has countable elements of reals}. Then (R,t) is a T₁-extension of (S,t(S)) using identity embedding. Put C₀={S}. μ_0 ={U \in t(S):S-U has countable elements of S for any S \in C₀³. Hence (R, t) is a T₁-extension of (S,t(S)) generated by cocountable open sets.

Theorem 3.6. Let (X,t) be a T_1 topological space and $Y=X\cup\{y\}$ with $y \notin X$. If $t(Y)=t\cup$ $\{ U \cup \{y\} : U \in t \text{ and } Y-U \text{ has countable elements}$ of Y}, then (Y, t(Y)) is an one point extension of X generated by cocountable open sets.

Proof. For any $x \in X$, take $\bigcup t(X)$ with $x \in U$. The $y \notin U$. Since (X, t) is T_1 space, $X - \{x\} \in t(X)$. Hence $(X - \{x\}) \cup \{y\} \in t(Y)$. Hence (Y, t(Y)) is T_1 space. It suffices to show that (Y, t(Y)) is an one point extension of X generated by cocountable open sets. For the trace filter of $y \in Y - X$ on X, $\mu_V = \{V \cap X: y \in V \in t(Y)\} = \{\bigcup t(X):$ Y-U has countable elements of Y} = {U \in t(X): X-U has countable elements of X}, there exists C_y={X}CPX such that μ_y ={U \in t(X): C-U has countable elements of X for each C \in C_y={X}}. The proof is completed.

Theorem 3.7. Let (Y,t) be a T_1 -extension of X. Set $\xi = \{D \subseteq PX : \cap cl_Y D \neq \emptyset\}$. Then Y is an extension of X generated by cocountable open sets if and only if ξ is a compatible nearness structure with generating collection.

Proof. Suppose Y is a T₁-extension of X generated by cocountable open sets. Then for each $y \in Y - X$, there exists $C_y \subset PX$ such that $\mu_{V} = \{U \in t(X): C - U \text{ has countable elements of } X$ for each $C \in C_{y}$. Let I = Y - X and $\eta = \xi(\{C_{y}\})$. $y \in I$). It suffices to show that $\xi = \eta$. Let $D \in \xi$. Then there exists $y \in \cap cl_Y D$. If $y \in X$ then $\cap cl_X D \neq \phi$ and $D \in \eta$. If $y \in Y - X$, then $y \in cl_V D$ for each $D \in D$. Then by Theorem 3.4, there exists $C \in C_v$ such that $cl_X D \cap C$ has uncountable elements of X. Hence $D \in n$. On the other hand suppose $D \in \eta$. If $cl_X D \neq \phi$ then $\cap cl_Y D \neq \phi$ and $D \in \xi$. Otherwise, there exists C_V such that for each $D \in D$ there exists $C \in C_v$ such that $cl_X D \cap C$ has uncountable elements of X. Then by Theorem 3.4, $y \in cl_{Y}D$ for each $D \in D$ and thus $\cap cl_V D \neq \phi$ and $D \in \varepsilon$.

Conversely, suppose ξ is a compatible nearness structure with generating collection. Let $y \in Y - X$ and let $\mu_v = \{ \bigcup X : y \in \bigcup \in t \}$ be the trace filter. Consider $D_V = \{D \subset X : y \in cl_V D\}$. Then D. Et. Hence there exists CCPX such that $D_V = ACX$: there exists $C \subseteq C$ such that $cl_X D \cap C$ has uncountable elements of X} since $\cap cl_X D_v = \phi$. It suffices to show that the given trace filter μ_v is equal to {U \in t(X): C - U has countable elements of X for each $C \in C$ = v_v . Let $U \in \mu_v$. Then there exists $V \in t$ such that $U = V \cap X$ and $y \in V$. Suppose there exists $C \in C$ such that C - Uhas uncountable elements of X. Let D=C-U. Since $cl_X D \cap C = cl_X (C - U) \cap C$ has uncountable elements of X, $D \in D_v$ and thus $y \in cl_V D$. But this is impossible. Hence C-U has countable

elements of X for each C $\in \mathbb{C}$. Thus $\mu_V \subset \nu_V$. On the other hand, let $U \in v_v$. Now there exists Set such that $S \cap X = U$. Suppose there exists Vet such that $y \in V$ and $V \cap X \subseteq U$. Then $y \in S$ $\bigcup V \in t$ and $(S \cup V) \cap X = U$ and $U \in \mu_{V}$. Now suppose for each VEt with yEV, we have that $V \cap X \not\subseteq U$. Let $x \in (V \cap X) - U$. Set $D = \{x_v: \text{ for } v \in V \}$ Then $y \in cl_Y D$ and $D \in D_v$. Hence y∈V∈t}. there exists C∈C such that cl_XD∩C has uncountable elements of X. But $D \cap U = \phi$ implies $d_{X}D\cap U=\phi$ Since $U\in \nu_{v}$ implies C-U has countable elements of X, which is contradict to the fact that $C-U \supset (C \cap cl_X D) - U = (C \cap cl_X D) \cap U^{C} \supset U^{C}$ $(C \cap cl_X D) \cap cl_X D = C \cap cl_X D$; uncountable. Hence $U \in \mu_{v}$ and thus $\mu_{v} = \nu_{v}$. Therefore Y is T_{1} . extension of X generated by cocountable open sets.

Lemma 3.8. Let (X,t) be a T_1 nearness space. Set $\xi' = \bigcup \{\eta; \eta \text{ is a compatible nearness structure}$ on X with generating collection and $\eta \subset \xi\}$. Then $\xi' \subset \xi$ and ξ' is a compatible nearness structure with generating collection.

Theorem 3.9. The category of T_1 nearness spaces with generating collections and bijective nearness preserving maps is bicoreflective in the category of T_1 nearness spaces and bijective nearness preserving maps. The coreflection is given by i: $(X, \xi') \rightarrow (X, \xi)$.

where f is a one-to-one and onto nearness preserving map, (Y, η) is a nearness space with generating collection and g(y)=f(y) for each $y \in Y$. Then g must be unique. Hence it suffices to show that g is a nearness preserving map. Let $A \in \eta$. If $\cap cl_X(f(A)) \neq \phi$ then $f(A) \in \xi'$. Suppose $\cap cl_X(f(A)) = \phi$. Then $\cap cl_Y A = \phi$, and since η is compatible nearness structure with generating collection, there exists a generating collection $C \in PY$ such that for each $A \in A$, there exists $C{\in}C$ such that $cl_YA{\cap}C$ has uncountable elements of Y. Since Y is T_1 space, each $A \in A$ has uncountable elements of Y. Let $D=\{C:$ $C \in C$ and C has uncountable elements of Y}. Then $D \in \eta$ and $f(D) \in \xi$. Then $\xi(f(D)) \subset \xi'$. To see this, note that each f(D) has uncountable elements of X for each DED since f is one-toone. Let $B \in \xi(f(D))$. If $\cap cl_{\mathbf{Y}} B \neq \phi$ then $B \in \xi'$. Suppose $\cap cl_X B = \phi$. Then, for each $B \in B$ there exists $D \in D$ such that $cl_X B \cap f(D)$ has uncountable elements of X. Since X is T₁ space, B has uncountable elements of X and $f^{-1}(B)$ has uncountable elements of Y since f is an onto Similarly $f^{-1}(cl_X B \cap f(D))$ has unmapping. countable elements of Y, and $f^{-1}(cl_X B \cap f(D))=$ $f^{1}(cl_{\mathbf{X}}B)\cap f^{1}(f(D))=f^{1}(cl_{\mathbf{X}}B)\cap D$ since f is one-Hence $\{f^{-1}(cl_X B): B \in B\} \in \eta$, and thus to-one. $\{cl_XB: B \in B\} = \{f(f^{-1}(cl_XB): B \in B\} \in \xi, and thus$ $B \in \xi'$ since f is a nearness preserving map. Hence $\xi(f(D)) \subset \xi'$. We claim that $f(A) \in \xi(f(D))$. For, let AEA As previously noted, A has uncountable elements of Y and there exists CED such that $cl_{\mathbf{Y}}A\cap C$ has uncountable elements of Y. Then $f(cl_{Y}A\cap C)\subseteq f(cl_{Y}A)\cap f(C)\subseteq cl_{X}(f(A))\cap f(C).$

Now $f(c|_{Y}A\cap C)$ has uncountable elements of X since f is one-to-one. Thus $c|_{X}(f(A))\cap$ f(C) has uncountable elements of X for each $A \in A$ and $f(A) \in \xi(f(D))$. Now $g(A) = f(A) \in \xi'$. Thus g is a nearness preserving map. 8 Cheju National University Journal Vol. 19 (1984)

Literature cited

- Bang Eun-Sook, 1984. Some properties of separation axioms on nearness structures Cheju National University Journal Vol.18, Natural Sciences, 187-192.
- [2] Bang Eun-Sook, 1984. A note on the topological R₀-regular spaces, Cheju National University Journal Vol. 18, Natural Sciences, 193-195.
- [3] Bently H.L., 1975. Nearness spaces and extensions of topological spaces, Studies in Topology, *L*-sademic Press, New York, 47-66.
- [4] Carlson J.W., 1983. Subset generated nearness structures and extensions, Kyungpook Math. J. 23(1) June, 49-61.
- [5] Dean A.M., 1983. Nearnesses and T_oextensions of topological spaces, Canad.

Math. Bull 26(4), 430-437.

- [6] Hastings M.S., 1982. On heminearness spaces, Proc. Amer. Math. Soc. 86(4), 567-573.
- [7] Herrlich H., 1974. A concept of nearness, Gen. Top. Appl. 4, 191-212.
- [8] Herrlich H., 1974. Topological structures, Methematical Centre Tracts 52, Amsterdam.
- [9] Herrlich H., and Strecker G.E., 1973. Category Theory, Allyn and Bacon, Boston.
- [10] Reed E.E., 1978. Nearnesses, proximities, and T₁-compactifications, Trans. Amer. Math. Soc. 236, 193-207.
- [11] Thron W.J., 1966. Topological Structures, Holt, Rinehart, and Winston, New York.

國 文 抄 錄

本 論文에서는 生成集合을 갖는 nearness 構造를 硏究하였다. 먼저 生成集合을 갖는 nearness 構造의 여러가지 性質들을 調査하여 이 nearness 構造들의 集合이 完備束이 됨을 보였고, 또 concrete nearness 構造가 되는 條件들을 調査하였다.

다음으로 이 nearness 構造의 應用으로서 한점 擴張空間을 만들었고, 또 生成集合을 갖는 nearness 空間들과 全單射 nearness 보존寫像들의 category 가 一般的 nearness 空間들과 全單射 nearness 보존寫像들의 category 안의 bicoreflective 임을 證明하였다.