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Summary

We construct the completion of an N-space by means of y-coclusters, and our results show that

1. Concrete Ni-structures are a proper tool to investigate strict extensions,

2. Contigual N1-structures are a proper tool to investigate strict compactifications,

3. N3-structures are a proper tool to investigate regular extensions.

INTRODUCTION

The concept of neaness was introduced [1] as a unifica-
tion of various concepts of topological structures. In fact,
it has been shown that the categories of topological R,-
spaces, uniform spaces, proximity spaces and contiguity
spaces are nicely embeddel in the category of nearness
spaces [2].

A concept of completness is available for nearness spaces
which generalizes the concept of completness in uniform
spaces. Moreover every nearness space has a completion.
In [1], this completion of 2 nearness space (X,§) has been
constructed by means of ¢-clusters.

Now, we try to construct the completion of a nearness
space by means of vy-coclusters and apply them,:among
others, to the study of extensions of spaces.

In the present paper, the most results are analogous to
the important paper “A Concept of Nearness” by H. Herr-
lich.

1. NOTATION, TERMINOLOGY AND
BASIC CONCEPTS.

X is a set, P'X = PX denotes the power set of X and
Py denotes the power set of P"X.

Small Latin letters x,y,z, ... usually denote elements of X.

Latin captitals A,B,C, ... usually denote subsets of X.

Bold- faced Latin capitals A,B,C, ... usually denote

subsets of PX.

Small Greek letters £, ... usually denote subsets of

P*X.

Capital Greek letters Q,A, ... usually denote subsets of

PX.

For any subset £ of P> X, the following abbreviations are
used: “A is near” or £A for AEE, “A is far” or EA for A€
(P*X-§), AEA for H(AJUA), AB for £{AB), ClA for
{XEX: {x)EA })

1.1. DEFINITIONS.

sec A ={BCX: VAEA ANB +# ¢).
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stack A = {BCX:TAE€AACB}.

AV B = {AUB:A€EA and BEB/}.

AA B= {ANB:AEA and BEB).

A<€B e YACATIBEBACB & A refinesB.

A< Be=> VACA IBEBBCA == A corefines B.

A~ B+ (A<Band B<A).

Ais called a stack in X iff A = stack A.

Ais called a grill in X iff ¢ # A # PX and AUBEA «=
(AEA or BEB).

A is called a filter in X iff ¢ # A # PX and ANBEA =
(A€ Aand BEA).

1.2. DEFINITIONS. If x is a point and A is a collection
of subsets to a topological space (X,cl) then
(a) x is an adherencepoint of A iff xEﬁ( clA:AE€A}.
®) A converges to x iff the neighbourhoodfilter of x
corefinesA. )

1.3. COROLLARY.

(1) x is an adherencepoint of A iff sec A converges to
X.

(2) A converge to x iff x is an adherencepoint of sec A.

14 PROPOSITIONS (characterizations of sec, stack
and ~).
(1) sec A= {BCX:X-B=stack A} .
(2) stack A =sec® A.
(3) A~B == sec A =secB *= stack A =stackB.
(4) sec® A =sec A (i.e. sec A is a stack).
(5) stack is a topological closure operator on PX.

1.5. PROPOSITIONS. Let SX be the set of all stacks in
X, and let A and B be elements of SX. Then

(1) A<Be ACB+<=>3secBCsecA.

(2) A~B*=A=B.

(3) AVB=ANB.

(4) A=secB+=>B =secA.

(5) Aisa filter «= sec A is a grill.

1.6. DEFINITION. A pair (X,t) is called a8 nearness
space or N-space iff the following conditions satisfied:

(N1) If A <Band {B then {A

(N2) IfN A # ¢, then £A

(N3) ¢ #E#P2X

(N4) If§(AVB), then tAor ¢ B

(NS) if & Cle:AGA}then EA

1.7. DEFINITION. If (X,f) and (Y n) are N-spaces, then
f:(X,£) = (Y,n) is called a neamness preserving map or an
N-map, if £ A implies n(fA)-where fA = { fA:A€A}.

1.8. DEFINITION. Let £ be a nearness structure on X.
Then

(1) T =P?X - § is called the farness structure induced on

Xby§;

@D u= ”E‘l ACPX:g{X-A:AEA}| is called the covering

structure induced on X by §;

3)r= 7= {ACPX:VBEy, BNstack A # ¢} is called

the merotopic structure induced on X by £.

The above three structure on an N-space(X.}) which are
associated withr £. Obviously, ¢ can be recovered from each

of the structure £, gz and v,

1.9. PROPOSITIONS. Let § be a nearness structure on
X and let £, 7 and 7 be the associated structures. Then
(1) A€tiffsecA€EY.
(2) AEviffsecAEE.
(3) A€ uiff VBEE, AN sec B #¢.
(4) ACEIffYBEU BNsec A# ¢,
(5) A€yiff vBEE JAEATBEBANB = ¢.
(6) Equivalents are :
(a) x G'CIEA. (b)sec{A,{x}}Ey
(e) [ X-A, X-{x}} 1
(7) If £:(X,§) = (Y,n) is a map between N-spaces then the
following conditions are equivalent:
(2) §A > 7(fA) (D)TB->E(f'B)
(© 1A 7,(TA) (@) i B> (F'B)
1.10. PROPOSITIONS. Let v be a subset of P*X:
(81) if A<Band vA thenyB.
(82) vx&X,vi{x}) -
(83) ¢#v+PX.
(84) if vy (AUB) then 7A or 9B.
(SS) vy(sec {CIA:A€A)) - y(sec A)where CIA ={x€EX:
y(sec{A,{x} )}

I.11. REMARK. A merotopic structure y on X induces
a topology on X. Indeed, the interior operator is defined by
Int A = {x€X: sec{{x}, X-A)y}. A subset of a nearness
space X shall be refered to as an open set if it is open in the
induced topology. On the other hand, if we define CIA =
{x€X:sec ({x}, AI€y ) for a subset A of X, then obviously
IntA = X-C(X-A) and therfore Cl is the Kuratowski’s closure
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operator on the induced topological space.

1.12. DEFINITIONS. An N-space (X,}) is called a to-
pological N-space iff the following equivalent conditions are
satisfied:

(T) If ¢Athen ﬁ{leA:AEA 1# ¢

(T') If yA then A converges.

An N-space (X,£) is called a contigual N-space iff the follow-
ing equivalent conditions are satisfied:

(C) If every finite subset of A belongs to ¢ then A be-

longs to £.

(C") If EA then there exists finite subset B of A with

3B.

1.13, NOTATIONS.
N-maps is denoted by Near. The fully subcategory of Near
whose objects are topological N-spaces (contigual N-spaces,
resp.) is denoted by T-Near (C-Near, resp.).

The category of N-spaces and

1.14. THEOREM

(1) T-Near is a bicoreflective subcategory of Near.
Let (X,t)ENear and g = (ACPX:NCISA:AGA)
+ o).
Then the map idx:(X.Et) -+ (X,t) is the T-Near
coreflection of (X,£).

(2) C-Near is a bireflective subcategory of Near.
Let (X.£) € Near and §_ = {ACPX:YBCA (B finite ~
£B)|.
Then the map idx:(X,E) - (X,Ec) is the C-Near
reflection of (X,£).

1.15. THEOREM. A nearness space is topological and
contigual iff it is compact topological space.

1.16. DEFINITION. An N-space is called compact iff
it is topological and contigual.

1.17. DEFINITION. An N-space is called an N1.space iff
the, following equivalent conditions are satisfied:

(1) If ix}Ely)

(2) If {{x)y}) €Eythenx=y.

1.18. DEFINITION. If (X.,§) is an N-space, ACPX, ACX
and BCX then

1 A <£ Biff A% (X-B).

(2 A (<£) ={BCX:d AEAA <$ B}.

1.19. COROLLARY. If (X,£) is an N-space and A CPX
then sec (A(<£)) = |BCX: YA€A, AtB}.

thenx =y,

1.20. DEFINITION. An N-space (X}k) is called regular
iff the following equivalent conditions are satisfied:
(1) IfEA(<S,) then EA.
(2) If yAthen 7A(<E).
(3) YA iff | BCX:YAEA, AfB)}.
(4) EAiffy BCB: YAEA, AB}.
1.21. PROPOSITION. If (X,§) is a regular N-space and
AEEMy then
(1) sec(A(<P)= KA),
(2) HA) = {BCX:YAEA, AfB | is the unique E-cluster
containing A,
(3) If A is a y-filter then A(<E) is the unique minimal
y-filter contained in A.

2. COMPLETENESS

Y]
From now on, our nearness spaces always means N1

spaces.
2.1. DEFINITIONS. Let (X,t) be an N-space. A non-
empty subset A of PX is called:

(1) A E-cluster iff A is a maximal element of the set
£, ordered by inclusion.

(2) A vy-cocluster iff A is 2 minimal element of the set
{ BEy:B=stack B, ordered by inclusion.

(3) A v-filter -or Cauchy filter- if A is a filter and A€y

2.2. PROPOSITION. Let (X,t) be an N-space. For non-
empty stacks A in X then
(1) Ais a $-cluster iff sec A is a y-cocluster,
(2) B =sec A is a y-cocluster implie§ that B is a minimal
y-filter,
(3) B is a minimal y-filter implies that B is a vy-filter.

2.3. REMARK

(1) If (X,®) is an N-space and x€X then
(a) &x)= lACX:xGClEA] is a ¢-cluster,

(b) the neighbourhood filter U(x) of x is a ycozlus-
ter,

(2) If (X,) is contigual or topological, then y<oclusters
are precisely minimal y-filters. (i.e. minimal Cauchy
filters)

(3) If (X.%) is topological then the §clusters are precisely
the collections £(x) and the y-coclusters are precisely
the neighbourhood filters U(x).
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In the above remark, the concept of y-coclusters seems to

be more. intuitive than that of &-clusters.

2.4. DEFINITION. . An N-space (X,}) is said to be com-
plete iff the following equivalent conditions:
(1) If A is any #-cluster then A has an adherencepoint.
(i.e. A = ¥(x) for some x € X)
(2) Every y-cocluster converges.

2.5. LEMMA. If (X.,8) is contigual then

(1) for each tA there exists a f{-cluster B with ACB,

(2) for each v B there exists a y-cocluster A with A< B,

(3) for each y-filter A there exists a 7-éoclustcr B with
BCA.

PROOF. (1) Let n={§B:ACB! and define the relation
“<” on n by BB’ iff BCB, for any B, B' in n. Then(n,<)
is a poset and furthermore, it is inductive.

By Zorn’s Lemma, n has a maximal element, say D.
Thus nD ; ACDEE, so that D is a §-cluster.

(2), (3) It is obvious by 2.2.

2.6. PROPOSITION.

(1) Every topological N-space is complete.

(2) A contigual N-space is complete iff it is compact.

PROOF. (1) It follows from 2.3(3)

(2) The sufficiency is immediate from (1) and 1.16. For
the necessity, let (A, By 2.5(1), there exists a f-cluster B
with ACB.

Then B has an adherence point, and so is A. Thus
NICLLAAEA # ¢.

Hence (X£) is a topological N-space and it is compact.

"2.7.PROPOSITION. Let (X,f) be an N-space and F be
a y-cocluster. Then FEFiff there exists BEu with L(FNB)
CF, where u is introduced in 1.8(2).

PROOF. See [10].

28. COROLLARY. Let F be a ycocluster. Then F
is the filter generated by { \{FNB):BEyu .

2.9. COROLLARY. Let F be a y-cocluster. Then FEFiff
IntFEF and therefore Fis an open filter.

.-

3. COMPLETION

3.1. DEFINITIONS. Let (X,£) be an N-space. Denote by

(1) Y = {A:A is a y-cocluster which does not converge ‘

in X}.
(2) X* = XUY (i.e. X* is the disjoint union of X and Y)
(3) B=!A€Y:BEA U Int B, for each subset B of X.
We shdl show that X* admits a suitable merotopic struc-
ture and B is the largest open set in X* whose intersection
with X is lmxB.

3.2. THEOREM. Let (X.,t) be an N-space. For QCPX*,

“let Ey* iff | ACX:AEstackS2)Ey. Then 7* is a merotopic

structure on X*.

PROOF. (S1){S4) are straightforward and are omitted.
To prove (S5), we need following Lemma.

3.3.LEMMA. Under the same notation as that in 3.2,
xECly*w iff ANw # ¢ for each ACX with x€EA, wCX*
That is {A:ACX | is a basis for open sets in (X*,7*).

PROOF.
secx.{:x},w}&‘, hence D= IACX:AEsecx.{[x},w)}
€y. Observe that D is a y-cocluster and so is the result.

Conversely, assume that ANw # ¢ for every ACX with
x€A.  Then |ACX:xEA)C|ACX:A€seci(x},w!! and
hence | ACX:A€sec| [x},w}} €y or sec{{x} ,w}Ey*, Thus
xEClx,w. '

For necessity, let xGClx.w. By definition,

PROOF. (of (S5) in Theorem 3.2.). Suppose that sec
{Clyx w:wEQ Ey* Define B= {ACX: AEsec {Clx.w:wefl}‘}
and D={ACX:A€sec§2]. Then BCD, for if AEB then
ANCl, 4w # ¢ for all WER. Let xEANCL o0, Then by 3.2,
ANw # ¢ for all wER. This fact together with yB implies
YD or y*(secS2).

3.4. PROPOSITION. If 2 is a y*-cocluster, then | ACX:
AGstack§? ) is a y-cocluster.

PROOF. Let A = |ACX:AEstack§2}. Then A ={ACX:
AENIEy and obviousley A is a stack. If AEA, then there
exists a WEQ with @CA. Since Q is a y*-cocluster, there
exists AEu* with U(S2NA)YCw, where. u* is the associated
covering structure with y*. Thus we have ((NANXCw
NXCANX = Int ACA. But Au* iff B ={ACX: D)@
with ACAJ. Now, to prove A is a y-cocluster, (by 2.7)
we show that {ANB)CA. Let DEANB. Then DEQ and
DCA for some AEA.

Thus A€ and AEQNA which imply DCA. This com-
pletes the proof.

3.5. THEOREM. (X*,y*) is a complete N1-space.
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= PROOF. Let §2 be a y*.cocluster. Then A = {ACX:
AER | is a y-cocluster.

Case 1). AEY, ie. A does not converge in X. Then
{A:A€A} = | A:AEA} is the open neighborhood filter of
A and corefines €, which implies that £ senverges to A.

Case 2). Suppose A converges to x for some x€X. Then
A = [ACX:x€Int A and obviousely 1A:xEA | = {A:AEA)
corefines €2, hence © converges to x. Hence (X*y*) is
complete. To prove (X*.y*) is NI, let {{AB)) Ey*, then
v ANB).  Since y-coclusters are minimal elements v-{¢},
this implies A=B. This completes the proof.

3.6. THEOREM. (X,7)is dense in (X*,v*).

PROOF. By 3.3, it sufficies to show that BNX = Int B
# ¢ for any BCX with B#¢.

Assume that B#¢ but ImxB=¢. Then for any.‘y-cocluster
A, lmxﬂeAand so BZA. Therefore (AEY:BEA}Ulnth=¢
which contradicts B+¢-

3.7. THEOREM. Let j:(X,y) = (X*n™*) bean inclusion
map. Then j is an embedding.

PROOF. Let ACPX, We shall show that yAiff ¥*A. For
sufficiency let y*A. Then B ={BCX:BEstackA} €y and
B<A. Hence yA.

Conversely, suppose YA and let B= {BCX:ﬁ&tuckA}.

Assume that B&v. By 1.8 (3), stackBND =BND=¢ for
some DEu.

Since IntDEu and IntDNstack A=¢, hence AEY which

is a contradiction.
3.8 THEOREM. (X*.*) is the completion of (X,7).
PROOF. It is immediate from 3.2, 3.5, 3.6 and 3.7.

In [2], a completion (X*,£*) of an N-space(X,£) has been
constructed by the following: Let :

(1) X* be the set of all £-clusters,

(2) E* = { QCPX*:U{Nw:weEN 1EE),

(3) j:X -+ X* the map defined by i(x) = #({x}).

Then j:(X.§) = (X*,£*) is the completion of (X,5).

3.9. REMARK. If (X,f) is a topological N-space, then
(X*.£%) = (X.0).

3.10. THEOREM. (See [1] & (2]) An N-space (X,£)
is

(1) regular iff (X* £*) is regular
(2) contigual iff (X*£*) is contigual iff (X*.£*) is com-
pact.

4. MAIN RESULTS

4.1. DEFINITION. A N-map f:(X,5) = (Y is called

(1) an N-embedding iff £:X = Y is injective and EAe=

n(fA),

(2) dense iffCIn(fX) =Y,

(3) a topological extension iff it is a dense topological

embedding and (X,t) and (Y,n) are topological,

(4) a T1 - extension iff it is a topologica! extension and

(X,£) and (Y,n) are T1-spaces.
(5) a strict extension iff it is T1-extension and {Clan:
ACX } is a base for the closed sets in Y.

(6) a compactification iff it is a T1-extension and (Y,n)

is compact.

4.2. REMARK(1). The completion j:(X.£) ~ (X* £*) of
a N1-space (X,t) is a dense N-embedding.

(2) Any dense topological embedding of (X,}) into a
regular T1-space (Y,n) is a strict extension of ().(,E).

4.3. DEFINITION.  Extensions f:(X.f) - (Y,n) and
£:(X,8) = (Y'n") of (X§) are called equivalent iff there
exists a homeomorphism h:(Y,n) - (Y'n") with f'=hof

In the following, all N-spaces are again supposed to be
N1-spaces.

4.4. DEFINITION. An N-space (X.§) is called concrete
iff for each A there exists a {-cluster B with ACB.

4.5. THEOREM. If (X,§) is an N-space, then (X.}) is
concrete iff (X*,£*) is topological.

PROOF. See {3}.

4.6. COROLLARY. Let (X,t) be an N-space. If (X,})
is contigual or topological or regular, then it is concrete.
PROOF. It’s inmediate from 2.5. and 4.5..

4.7.PROPOSITION. If j:(X,t) ~ (X*t*) is the com-
pletion of (X.,§), then j:(X,Et) d (X‘,(S‘)t) is a strict ex-
tension of (X,zt).

PROOF. It follows that the induced topological space of
(X*,y*) is the strict extension of the induced topological
space of (X,y) with all y-cocluster as filter trace.
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4.8. THEOREM. If (X,£) is a concrete N-space then
J(XE) ~ (X*.£*) is a strict extension of (X,st). Vice
versa, for any strict extension f:(X,{) - (Y,n) of a topologi-
cal N-space (X,{) there exists precisely one concrete N-struc-
ture £ on X, namely

£={ ACPX:N {C]an:AGA}# }
such that j:(X,ft) = (X*, £*) and £:(X,$) = (Y.7) are equi-
valent extensions of (X,Et)=(X, ). In particular,

(1) (X.£) is contigual iff (Y n)is a compact space.

(2) (X,£)is regular iff (Y,n) is a regular space.

PROOF: (a) By 4.5, obviously j:(X,Et) +> (X*§*) is a
strict extension f (X,Et).

(b) Conversely, let f:(X,{) = (Y,n) be a strict extension.
If &= {Acpx}nman:AeM#}, then (X.2) is a Nl-space
and £=f. Let j:(X.£) - (X*,£*) be the completion of
(X,£) and let j:(x,it) - (X‘,(z‘)t) be the corresponding

extension. For each yEY define h(y) = {ACX: yCl an}.
But the strictness of g, h(y) is a &-cluster since y =N
(C]an:Ael(y)]. Consequently h:Y - X* is bijective and
j=hof. To show that hi(Y,n) - (X*(£*),) is a homeomor-
phism, let ACX and yE€Y. Then yGCIan iff A€h(y) iff
h(y)ecls,,jA. Since f:(X,£) = (Y,n) and j:(X.t) > (X‘.(E‘)t)
are strict extensions, h:(Y,n) - (X‘,(E')t) is a homeomorph-
ism.

(c) The first part of (1) follows immediately 3.10 (2) and 4.6.
The second part follows the fact that the N-space (X,§)
constructed in (b) is contigual, provided that (Y,n) is com
pact.

(d) (2) is similar to (1).

Finally, an N-space is calied a N3-space iff it is a regular
NI-space.
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