On the Banach sqace c_o

Seok-zun Song · Seong-kowan Hong

Banach 空間 *c.*에 關하여

宋 錫 準 · 洪 性 官

Summary

In this paper, we treat the relation between weakly compactness and compactness in the Banach space c_{o_r}

0. Introduction

Lindenstrauss conjectured that the second dual X^{**} of a Banach space X is injective if and only if X contains a subspace isomorphic to c_o . The author tries to investigate the properties of c_o and operator on it systematically for the study of the conjecture.

1. The basic properties of c_{\star}

Let l_{\cdot} be the space of all bounded sepuences of real numbers, c the space of convergent sequences and c_{\circ} the space of sequences converging to 0, all of which are equipped with the sup-norm $||(\xi_i)|| =$ $sup_i |\xi_i|$. We note that these are normed linear spaces under the pointwise addition and multiplication by reals and the sup-norm.

Theorem 1. c_o , c and l_{\perp} are real Banach spaces. c_o is a closed subspace of c and c is a closed subspace of l.

For the proof see 2, pp.218-219. Closedness of c_o in $c(\text{or } c \text{ is in } l_{\bullet})$ is clear since limit point of $c_o(\text{or } c)$ induces a Cauchy sequence in $c_o(\text{or } c)$.

Theorem 2. c. is topologically isomorphic to c.

Proof. For each (ξ_i) in c converging to ξ , define T from c into c_0 by

 $T(\xi_1, \xi_2, \cdots) = (\xi, \xi_1 - \xi, \xi_2 - \xi, \cdots).$

Then $||T|| = ||T^{-1}|| = 2$ and so T is the required isomorphism.

Theorem 3. c is Banach isomorphic to $c_{o} \oplus R$.

Proof For each $\mathbf{x} = (\mathbf{x}_i)$ in c let $t = lim_i \mathbf{x}_i$. We can put $\mathbf{x} = \mathbf{x}_o + te$ where \mathbf{x}_o is in c, and $e = (1, 1, 1, \cdots)$. Define $T : c \rightarrow c_o \oplus R$ by $\mathbf{x} \rightarrow (\mathbf{x}_o, t)$, where $c_o \oplus R$ is a Banach space with the norm $||(\mathbf{x}_o, t)|| =$ $sup_i |\mathbf{x}_i + t|$. Then $||T|| = ||T^{-1}|| = 1$ and $||T(\mathbf{x})|| = ||\mathbf{x}||$. Therfore $c = c_o \oplus R$.

Theorem4. c_* and c^* are isometrically isomorphic to l_1 .

Proof. We shall first prove for c_0^* that it is isometrically isomorphic to l_1 .

If $y = (\eta_i) \epsilon l_1$ add $\wedge x = \sum \xi_i \eta_i$ for every $x = (\xi_i)$ ϵc_o , then \wedge is a bounded linear functional on c_o , since $|\wedge x| \leq \sum |\eta_i| = ||y||_1$ for any $x \epsilon c_o$ with ||x|| = 1. We claim that $||\wedge|| = ||y||_1$. In fact for any

2 논 문 집

 $n \ge 1$, let $\xi_i = sgn \ \eta_i$ for $1 \le i \le n$ and $\xi_i = 0$ for i > n. Then $\mathbf{x} = (\xi_i)$ is in c_o , $||\mathbf{x}|| = 1$ and so $\wedge \mathbf{x} = \sum |\eta_i|$ $\le ||\Lambda||$ for every n, that is $||y||_1 = \sum_{i=1}^{n} |\eta_i|$. Therefore $||\Lambda|| = ||y||_1$.

Next, let's show every $\wedge \epsilon(c_o)^*$ is obtained in this wey. Let $e_i = (0 \ 0, ..., 1, 0, ...,)$ where 1 is in the *i*-th place and there are zeros in other places. We know that $\{e_1, e_2, ...\}$ is a basis of c_o . Let $\wedge \epsilon c_o^*$ and $\wedge (e_i) = \eta_i$. By linearity and continuity of \wedge , $\wedge (x) = \sum \xi_i \eta_i$ for any $x = (\xi_i) \epsilon c_o$. We claim $(\eta_i) \epsilon l_1$. For any $n \ge 1$, let $\xi_i = sgn \eta_i$ for $1 \le i \le n$, and $\xi_i = 0$ if i > n. Then $x = (\xi_i) \epsilon c_o$, ||x|| = 1 and so $|\wedge (x)| = \sum_{i=1}^{n} |\eta_i| \le ||\wedge|| < \infty$. Thus $\sum_{i=1}^{n} |\eta_i| \le ||\wedge||$, *i.e.* $y = (\eta_i) \epsilon l_1$.

Define T from c_0^* to l_1 by $\wedge \downarrow \rightarrow y$, where $y = (\eta_i)$, $\wedge (x) = \sum \xi_i \eta_i$ for $x = (\xi_i) \epsilon c_o$. Then T is obviously one to one, onto and linear. Furthermore T is norm-preserving.

By the similar method c^* is isometrically isomorphic to l_1 .

2. Weakly compact subsets in c.

Lemma 1. Let x_n and x be in c_o . $x_n = (a_i^n)$ converges weakly to $x = (a_i)$ if and only if $\{x_n\}$ is bounded and $\lim_n a_i^n = a_i$ for each *i*.

Proof. c_o is naturally imbedded in l_1^* . If x_n converges weakly to x, then by the Banach-Steinhaus Theorem $\{||x_n||\}$ is bounded. Hence $\{x_n\}$ is a bounded sequence. Now since each e_i belongs to l_1 , $x_n e_i$ converges to $x e_i$ which gives the fact that $lim_n a_i^n = a_i$.

Now assume that $\{x^n\}$ is bounded and $\lim_n a_i^n = a_i$. Let $z = (b_i) \in l_1$. Since $\sum_{i=1}^{n} |b_i| < \infty$, for any $\varepsilon > 0$ there exists N such that $\sum_{N+1}^{n} |b_i| < \varepsilon$. Since for each *i* $\lim_n a_i^n = a_i$, for the given $\varepsilon > 0$ there is M such that n > M implies $|a_i^n - a_i| < \varepsilon$, $i = 1, 2, \dots, N$.

Then if n > M, $|\mathbf{x}_{\cdot}\mathbf{z} - \mathbf{x}\mathbf{z}| = |\sum a_i^n b_i - \sum a_i b_i| \leq \sum |a_i^n - a_i||b_i|| = \sum_{i=1}^N |a_i^n - a_i||b_i| + \sum_{N+1}^N |a_i^n - a_i||b_i|| \leq \varepsilon \sum_{i=1}^N |b_i| + ||\mathbf{x}_n - \mathbf{x}||\sum |b_i|| < \varepsilon (\alpha + \beta)$

since $\{\boldsymbol{x}_n\}$ is bounded from the assumption.

We shall give an example that the condition that $\{x_n\}$ is bounded is essential in the above lemma.

Example 1. Let $\mathbf{x}_n = n^2 e_n$, $\mathbf{x} = 0$ in c_o , where e_n is the staudard basis, $\mathbf{z} = (1/1^2, 1/2^2, 1/3^2, \cdots)$ in l_1 . Then $lim_n \ a_i^n = 0$ for each i, but $|\mathbf{x}_n \mathbf{z} - \mathbf{x}\mathbf{z}| = 1$. $(\mathbf{x}_n = (a_i^n))$.

Theorem 1. Let K be a subset of c_0 . Then the following two statements are equivalent.

1) K is relatively weakly compact.

2) K is bounded and the closure of K in the product topology is a compact subset of c_0 in the weak topology.

Proof. Note that $c_{\circ} \subset \mathbb{R}^{N_{\circ}}$ and the product topology is the weak topology induced by the set of projections $\subset c_{\circ}^*$.

If 1) holds, the closure of K in the weak topology of c_o is also compact in the product topology. Also since a continuous functional on a compact set is bounded, the set x^*K is bounded for any x^* in c_o^* and by the Banach-Steinhaus Therem, K is bounded. Now let x be in the closure of K in the product topology. Then we can choose a sequence $\{x_n\}$ in K such that $\{x_n\}$ converges to x in the product topology. Now Since K is weakly compact, by the Eberleine theorem a subsequence of $\{x_n\}$ converges weakly to some y in c_o . But by lemma 1, x=y. Therfore x is in c_o . Now since K is bounded, the closure of K in the product topology is compact in the weak topology.

Suppose 2) holds. Then the closure of K in the product topology is a compact subset of c_o in the weak topology. Note that the closure of K in the weak topology is contained in the closure in the

product topology. Since a closed subset of a compact set in a Hausdorff space is also compact, K is relatively compact.

Example 2. Let $K = \{e_i : i = 1, 2, \dots\}$, where e_i is the standard basis. Then K is relatively weakly compact, but not relatively compact.

Definition. Let X and Y be Banach spaces. A linear operator T from X to Y is said to be compact (weakly compact) if T maps the closed unit ball of X to a relatively compact(relatively weakly compact) subset of Y.

Lemma 2. Let $\{x_n\}$ be a sequence in l_1 , x_n converges weakly to x if and only if x_n converges to x. Moreover, relative compactness and relatively weakly compactness are the same in the space l_1 .

Proof. If \boldsymbol{x}_n converges to \boldsymbol{x} , then clearly \boldsymbol{x}_n converges weakly to \boldsymbol{x} since the weak topology is weaker than the original topology.

Suppose that x_n converges weakly to x where $x_n = (a_i^n)$, and $x = (a_i)$. Then for any $\wedge \epsilon l_1^*$, $\wedge (x_n) \rightarrow \wedge x$ as $n \rightarrow \infty$. Note that $l_1^* = l_-$, in other words, for any $\wedge \epsilon l_1^*$, there is one and only one $y = (b_i) \epsilon l_-$ such that $\wedge x = \sum a_i b_i$, $||\wedge|_i = ||y||$ for any $x = (a_i) \epsilon l_1$. Therefore for any $\wedge \epsilon l_1^*$, $\sum (a_i^n - a_i) b_i \rightarrow 0$ as $n \rightarrow \infty$. Put $b_i = \text{sgn}(a_i^n - a_i)$. Then $||y|| = ||(b_i)|| = 1$ and also y is in l_- . Therefore $\wedge (x_n - x) = \sum |a_i^n - a_i| \rightarrow 0$ as $n \rightarrow \infty$. Since $||x_n - x||_1 = \sum |a_i^n - a_i|$, the lemma is proved.

Theorem 2. Let T be an operator from c_o to

Literatures Cited

- Eberlein, W. F. Weak compactness in Banach spaces, Proc. Nat. Acad. Sci., USA 33, 51-53, 1947.
- 2. Hewitt, E., Karl Stromberg, Real and Abstract Analysis, Springer-Verlag, New-York, 1975.
- Kadec, M. I., On the connection between weak and strong convergence, Dopovidi Akad.

itself. Then T is compact if and only if T is weakly compact.

Proof. Note that T is compact if and only if T^* is compact on l_1 . By lemma 2, T^* is compact if and only if T^* is weakly compact. Thus the theorem is proved.

Lemma 3. Suppose E is a convex subset of c_o . Then the weak closure of E is equal to its original closure.

Proof. Let $\overline{\mathbb{E}}_{v}$ be the weak closure of E. $\overline{\mathbb{E}}_{v}$ is weakly closed, hence originally closed, so that $\overline{\mathbb{E}} \subset \overline{\mathbb{E}}_{v}$. To prove the rest, choose $x_{\bullet} \epsilon c_{\bullet}, x_{\bullet} \subset \overline{\mathbb{E}}$. Then there exists $\wedge \epsilon c_{\bullet}^{*}$ and $r \epsilon R$ such that for every $x \in \overline{\mathbb{E}}$,

 $Re \wedge x_{\circ} < r < Re \wedge x$.

The set $\{x : Re \land x < r\}$ is therefore a weak neighborhood of x, that dose not intersect E. Thus x, is not in E_{\bullet} .

Theorem 3. Let $\{x_n\}$ be a sequence in *c*, that converges weakly to a $x \in c_o$. Then there is a sequence Then there is a sequence $\{y_i\}$ in *c*_o such that

a) each y_i is a convex combination of finitely many x_n ,

b. $y_i \rightarrow x$ with respect to the sup-norm.

Proof. Let P be the convex hull of the set of all x_n , and let \bar{P}_{σ} be the weak closure of P. Then $x \in P_{\sigma}$. By lemma 3, x is also in the original closure \bar{P} of P_{ρ} . It follows that there is a sequence $\{y_i\}$ in P that converges originally to x.

Nauk. Ukr. RSR9, 949-952, 1959.

- Kosaku Yosida, Functional Analysis, Springer-Verlag, New York, 1970.
- Rudin, W., Real and Complex Analysis, Me Graw-Hill, New York, 1974.
- Rudin, W., Functional Analysis, M.Graw-Hill, New York, 1973.

- 157 -

4 논 문 집

국 문 초 록

Banach 空間c.에 關하여

I·에서 약위상의 개념이 원위상과 일치함을 이용, 정의역과 공변역이 모두 c.인 선형함수가 compact가 되기 위한 필요충분조건이 weakly compact임을 밝히고, c.에서 약위상적 수렴은 sup-norm으로 주어진 거리공간 c.에서의 수렴과 어떤 관계가 있는가를 밝혔다.

•