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Summary

In this paper,
space ¢,

0. Introduction

Lindenstrauss conjectured that the second dual
X#** of a Banach space X is
isomorphic to ¢..

if and only
The

and

injective
if X contains a subspace
author tries to investigate the properties of ¢,
operator on it systematically for the study of the
conjecture,

1. The basic properties of c,

of

sequences

Let I. be the space of all bounded sepuences
real numbers, ¢ the space of convergent
and ¢, the space of sequences converging to 0, all
of which are equipped with the sup-norm [|(&)|[=
sup;1&:]. We note that these are normed linear
spaces under the pointwise additicn and multi-

plication by reals and the sup-norm.

Theorem 1. ¢,, ¢ and [I. are real Banach
spaces, ¢, is a closed subspace of ¢ and c is a closed
subspace of /.

For the proof see 2, pp.218—219.

¢, in c(or ¢ is in I.) is clear since limit point

Closedness of
of

¢.(or ¢) induces a Cauchy sequence in c.(or ¢).
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we treat the relation between weakly compactness and

4=

compactness in the Banach

Theorem 2. ¢, is topologically isomorphic to .

Proof. For each (&) in ¢ converging to §

define T from ¢ into ¢, by

T(Elo Ezy"‘)'_:(En 51—5, E:—E,“')-
Then ||T'|=!T-%!=2 and so T is the required
isomorphism, .

Theorem 3. ¢ is Banach isomorphic- to ¢.DR,

Proof For each x=(%;) in ¢ let t=limXx.. We
can put £=x,+te where X, is in ¢, and e=(1, 1
1,*). Define T : c—c.®DR by X—(X,, t), where
¢.®R is a Banach space with the norm {|(%X., D=
sup;|%:+¢t]. Then ||TI="T"=1 and \T()lI=|%].
Therfore c=c.PR.

isometrically

Theorem4. c¢,* and c¢* are

isomorphic to /..

Proof. We shall first prove for c¢.* that it is
isometrically isomorphic to /i

If y=()el, add AX=X¢7; for every X=(§)
€c,, then A is a bounded linear functional on c.,
since [AXISZIZ|={lyl\ for any % €c, with
[x]!= 1. We claim that)l A!|=||y|l;. In fact for any
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n=l, let &=sgn 7, for 1<i<n and £:=0 for i>n.

Then X=(&) is in ¢,, |I¥|=1 and so AX=3 7l
<|IAll for every n, that is Iyl,=3% 7,1. Therefore
1
”/\H'—"H}Hl
Next, let's show every Ae(c,)* is obtained in
Let e.=(0 0s..., 1, 0,-+,) where 1 is
in the i-th place

this wey.
and there are zeros in other
places. We know that {e, e;,---} is a basis of ¢..

Let Aec,* and A(e)=%. By
continuity of A, A(X)=Y &% for any X=(§)ec
We claim (%.)el,.. For any n=1, let &=sgn M
for 1<<i<n, and &=0 if i>n. Then X=(§)¢eca»

=1 and so | A()] =Z 1Tl SI Al <o,

Thus'limflgl/\u, i.e.y=(1)¢el.

linearity and

Define T from co* to 1 by Al—y, where y=
7, AX)=XED, for x= (£)ec,.  Then T s
obviously one to ore, onto and lincar. Futhermore

T is norm-preserving.
By the similar method ¢* is isometrically isomor~
phic to I,

2. Weakly compact subsets in ¢,

Lemma 1. Let X, and X be in ¢,.. %.=(a})
converges weakly to X=(a;) if and only if {X.} is
bounded and /im. @}= a: for each i.

Proof. c. is naturally imbedded in [*. If X
then by the Banach-
Hence {%.}

Now since each e; belongs

converges weakly to X,
Steinhaus Theorem {||*.|!} is bounded.
is a bounded sequence.
to I, X.e. converges to Xe; which gives the fact
that lim. a7 =a.

Now assume that {¥"} is bounded and lim. a7 =

a;, Le: z=(b.)el,. Sincei;jlb.»l <o, for any €>0

there exisis N such that S 16 <. Since for
N+1
each i lim. a}=a., for the given ¢>0 there is M

such that #>M implies la}—a;! <e, i=1, 2,--, N.

Then if 7> M, '%.z2—%z = |Sajbi—Tab; =L la}

- N
—abill=3 lai—ab!+ E lal—a b= ¢ L1b]
+lx—x)| 18, <cla+B)

gince {X.}is bounded from the assumption.

We shall give an example that the condition that
{%.} is bounded is essential in the above lemma.

Example ]. Let X.=n%¢., X=0 in ¢c,, Where €»
is the staudard basis, z=(1/1?, 1/2%, 1/3%~) in
.. Then lim. a;=0 for each i, but |X.2—%2' =1,

(x.=(a})).

Theorem 1. Let K bea subset of ¢, Then the
following two statements are equivalent.
1) K is relatively weakly compact.
2) K is bounded and
product topology i3 a compact

the closure of K in the
subset of ¢, in the
weak topology.

Proof. Note that c.,CRN * and the product topology

ia the weak topology induced by the set of
projectionsczc,*.

If 1) holds, the closure of K in the weak topology
of ¢, is also compact in the product topology. Also
since a continuous functional on a compact set is
bounded, the set X*K is bounded for any X* in ¢.*
and by the Banach-Steinhaus Therem, K is bounded.
product
{x.} in

product

Now let X be in the closure of K in the
topology. Then we can choose a sequence
K such that {x.} converges to X in the
topology. Now Since K is weakly compact, by the
Eberleine theorem a subsequence of {x.} converges
weakly to some ¥ in ¢.. But by lemma 1, x=y.
Therfore x is in c.. Now since K is bounded, the
closure of K in the product topology is compact in
the weak topology.

Suppose 2) holds. closure of K in the

Then the
product topology is a compact subset of ¢, in the
weak topology. Note that the closure of K in the

weak topology is contained in the closure in the
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product topology. Sinc: a closed subset of a compact

set in a Hausdorff space is als) compact, K is
relatively compact.
Example 2. Let K= {e,:¢=1,2,--}, where

Then K
weakly compact, but not relatively compact.

¢; is the standard basis. is relatively

Definition. Let X and Y be Banach spaces. A
linear opcrator T from X to Y is said to be compact
(weakly compact) if T maps the closed unit ball
of X to a relatively compact(relatively weakly

compact) subset of Y,

Lemma 2. Let {X.} be a

converges weakly to X if and only if x.

sequence in ;. X.

converges
to x. Moleover, relative compactness and relatively
weakly compactness are the same in the space /i,

Proof. Ii Xx. converges to X, then clearly X.
converges weakly to X since the weak topology is
weaker than the original topology.

Suppose that X. converges weakly to X where X
=(al}

— Ax as n—oo, Note that /;*=/., in other words,

and x=(a;). Then for anyAe/;*, A(Xa)

for any A€li*, there is cne and only one y=(b)
el such that Ax=ZTaib, [IAL=]yl] for any zx=
(@) el Therefore for any Ael*,  Z(ai—anb
—0 as n—oo. Put b= sgn (a]—a). Then Jyil=
ll(8:)1|=1 and also y is in [.. Therefore A(x—x)
=Y .a"—a;i—0 asn—o0, Since l|Zn—x = X 1@ —ail,

the lemma is proved.

Theorem 2, Let T be an operator from ¢, to

Then T is
weakly compact.

itself. compact if and only if T is

Proof. Note that T is compact if and only if T*
is compact on /;. By lemma 2, T* is compact if
and only if T* is weakly compact. Thus the theorem

is proved,

Lemma 3. Suppose E is a convex subset of c..
Then the weak closure of E is equal to its original
closure.

Proof. Let E. be the weak closure of E. Eo s
weakly closed, hence originally clesad, so that
EcE..

Then there exists A¢€c.* and reR

To prove the rest, choose x.€cCo, %K.

such that for
every x € E,

ReAax.<r<Repax.
The set {x:

neighborhood of x, that dose not intersect E, Thus

Reax<r} is therefore a weak

%, is not in E..

Th:orem 3. Let {x.} be a sequence in ¢, that
Then
sequence Then there is a sequence (¥i} in ¢, such
that

a) each y; is a convex combination of finitely

converges weakly to a xec.. there is a

many Xn,

b. y;—x with respect to the sup-norm,

Proof. Let P be the convex hull of the set of all
Then
By lemma 3, x is also in the original

%., and let P, be the weak closure of P.
x€Po.
closure P of P,. It follows that there is a scquence
{3 in P that converges originally t> =z,
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