제주도 금리하고 두문집 (2004) (533 십 pp. 33 ~ 40

A NOTE ON BIRGET-RHODES EXPANSIONS OF TOPOLOGICAL GROUPS

KEUNBAE CHOI

ABSTRACT. Let G be a compact group with identity 1 and let $C_1(G)$ be the semilattice of all compact subsets of G containing 1. In this paper, we investigate some structures of the compact F-inverse monoid

$$\tilde{G}_{\varepsilon}^{\mathscr{I}} = \{(A,g) \in C_1(G) \times G : g \in A\}.$$

1. INTRODUCTION

For any finite sequence (s_1, s_2, \ldots, s_n) of elements s_1, s_2, \ldots, s_n in a semigroup S, put

$$P(s_1, s_2, \dots, s_n) := \{1, s_1, s_1 s_2, \dots, s_1 s_2 \cdots s_n\},\$$

where 1 is the identity of S^1 . Define

$$\tilde{S}^{\mathscr{I}} := \{ (P(s_1, s_2, \dots, s_n), s_1 s_2 \cdots s_n) : s_1, s_2, \dots, s_n \in S, n \ge 1 \}$$

with the multiplication

$$P(s_1, s_2, \dots, s_n), s_1 s_2 \cdots s_n) (P(t_1, t_2, \dots, t_m), t_1 t_2 \cdots t_m)$$

= $(P(s_1, s_2, \dots, s_n) \cup (s_1 s_2 \cdots s_n) \cdot P(t_1, t_2, \dots, t_m), s_1 s_2 \cdots s_n t_1 t_2 \cdots t_m)$

where $s \cdot U = \{su : u \in U\}$ for $s \in S$ and $U \subset S$. Then $\tilde{S}^{\mathscr{X}}$ is a semigroup, which is called the *Birget-Rhodes expansion* of the semigroup S (see [1]). It turns out [12] that when S = G a group.

$$\tilde{G}^{\mathscr{I}}=\{(A,g)\in P_1(G) imes G:g\in G\}.$$

where $P_{\Gamma}G$, denotes the set of all finite subsets of G containing the identity 1 of G. In particular, the Birget-Rhodes expansion $\tilde{G}^{\mathscr{F}}$ of a group G is an F-inverse monoid whose maximum group image is isomorphic to the group G. This also leads to a new approach to the Burnside problem [2]. Recently, Lawson [11] proves that the Birget-Rhodes expansion $\tilde{G}^{\mathscr{F}}$ of a group G is isomorphic to the Exel's semigoup

S(G) [7] constructed by generators and relations. In [6], the author introduces an inverse monoid $\tilde{G}_c^{\mathscr{A}}$ containing the Birget-Rhodes expansion $\tilde{G}^{\mathscr{A}}$ of a topological group G obtained by replacing "finite" with "compact" of $P_1(G)$ and describe some algebraic structures of the monoid $\tilde{G}_c^{\mathscr{A}}$ and give a topology on it so that the Birget-Rhodes Expansion $\tilde{G}^{\mathscr{A}}$ of a compact group G is dense in $\tilde{G}_c^{\mathscr{A}}$ and its maximum group image is topologically isomorphic to the group G. Furthermore, it was shown that Green's relations on $\tilde{G}^{\mathscr{A}}$ are dense in those of $\tilde{G}_c^{\mathscr{A}}$.

In this paper, we investigate some structures of the compact *F*-inverse monoid $\tilde{G}_{c}^{\mathscr{F}}$.

Throughout this paper, we shall use basic results from (inverse) semigroup theory and topological semigroup theory; see [4], [5], [8], and [10].

2. BIRGET-RHODES EXPANSIONS OF TOPOLOGICAL GROUPS

Let G be a topological group and let C(G) be the set of all non-empty compact subsets of G. Then C(G) with the set product multiplication,

$$(A, B) \to AB := \{ab : a \in A, b \in B\}.$$

is a topological semigroup under the Vietoris topology [3]. And also C(G) with the set union multiplication.

$$(A, B) \mapsto m(A, B) := A \cup B.$$

is a semilattice.

For each $g \in G$, the map $\alpha_g : C(G) \to C(G)$ defined by

$$\alpha_g(A) = gA := \{g\}A$$

is an endomorphism of the semilattice (C(G), m) since

$$\alpha_a(m(A, B)) = m(\alpha_a(A), \alpha_a(B)).$$

It is easy to check that the semidirect product $(C(G), m) \prec_{\lambda} G$ of the semilattice C(G) and G is an inverse semigroup, where

$$\lambda: G \to \operatorname{End}(C(G)), \ \lambda(g) = \alpha_g.$$

Let

$$\hat{G}_c^{(s)} \coloneqq \{(A,g) \in C_1(G) \times G \subset g \in A\}$$

where $C_1(G)$ denotes the set of all compact subsets of G which contains the identity element 1 of G. Then we can easily show that $\tilde{G}_c^{\mathscr{R}}$ is an inverse submonoid of the inverse monoid $(C(G), m) \times_{\phi} G$.

Let G be a locally compact group. Define a map

$$\alpha: G \times C(G) \to C(G), \ \alpha(g, A) = gA$$

Then α is continuous action on C(G) from the fact that $\alpha = p \circ (i \times 1_{C(G)})$, where p is the set product multiplication on C(G) and $i : G \to C(G)$. $g \mapsto \{g\}$, is a homeomorphic embedding of G into C(G).

For each $g \in G$, the map $\alpha_g : C(G) \to C(G)$ defined by $\alpha_g(A) = gA$ is a continuous endomorphism of the topological semilattice $(C(G), \cup)$.

Throughout, if G is a locally compact group, we denote by $\tilde{G}_c^{\mathscr{H}}$ the topological inverse submonoid of the topological inverse semigroup $C(G) \times_{\lambda} G$. In particular, if G is a compact group, then $\tilde{G}_c^{\mathscr{H}}$ is a compact F-inverse monoid (see, [6]).

An inverse semigroup is E^* -unitary (also termed '0-*E*-unitary') if every element above a non-zero idempotent is also an idempotent. Let *S* and *T* be inverse semigroups with zero, say 0. A function $\theta : S \to T$ is said to be a 0-morphism if $\theta(ab) = \theta(a)\theta(b)$ for all $ab \neq 0$: It is called 0-restricted if $\theta(0) = 0$; and it is said to be idempotent pure if *a* is idempotent whenever $\theta(a)$ is idempotent.

An inverse semigroup S with zero is said to be strongly E^* -unitary [9] if there is an idempotent pure. 0-restricted, 0-morphism θ from S to a group with zero adjoined.

The importance of (strongly) E^* -unitary semigroups within inverse semigroup theory is described in detail in [9] and [10].

Lemma 2.1. Let G be a compact group and let $M = \{(G,g) : g \in G\}$. Then M is a minimal ideal of $\tilde{G}_c^{\mathscr{H}}$.

Proof. We can easily show that M is an ideal of $\tilde{G}_c^{\mathscr{P}}$ and it is also a group. Thus we have M is the minimal ideal of $\tilde{G}_c^{\mathscr{P}}$.

Theorem 2.2. If G is a compact group, then the Rees quotient $\tilde{G}_c^{\mathscr{H}}/M$ of $\tilde{G}_c^{\mathscr{H}}$ mod the minimal ideal M of $\tilde{G}_c^{\mathscr{H}}$ is a strongly E^{*}-unitary inverse semigroup.

Proof. We note that $\tilde{G}_c^{\mathscr{F}}$ is an *E*-unitary inverse monoid whose maximal group homomorphic image is *G*. By Theorem 4 in [9], the inverse semigroup $\tilde{G}_c^{\mathscr{F}}/M$ is strongly *E*^{*}-unitary associated with *G*.

If X and Y are disjoint spaces, the we give $X \cup Y$ the topology which is coherent with that of X and Y, i.e., a subset U of $X \cup Y$ is open if and only if $U \cap X$ is open in X and $U \cap Y$ is open in Y. Notice that if X and Y are both (locally) compact, then $X \cup Y$ is (locally) compact.

Let S and T be disjoint topological semigroups and let $\phi: S \to T$ be a continuous homomorphism, then define continuous multiplication on $S \cup T$ by

$$(x,y) \longrightarrow \begin{cases} m_S(x,y) & \text{if } x, y \in S; \\ m_T(x,y) & \text{if } x, y \in T; \\ m_T(\phi(x),y) & \text{if } x \in S \text{ and } y \in T; \\ m_T(x,\phi(y)) & \text{if } x \in T \text{ and } y \in S. \end{cases}$$

where m_S and m_T are the multiplication on S and T. respectively.

We denote $S \cup T$ with this multiplication by $S \cup_{\phi} T$. Observe that $S \cup_{\phi} T$ is a topological semigroup with this multiplication under the topology which is coherent with that of S and T. Let I be a closed ideal of S and let R be the congruence on $S \cup_{\phi} T$ generated by $\{(x, \phi(x)) : x \in I\}$. If S and T are locally compact σ compact semigroups, then $(S \cup_{\phi} T)/R$ is a topological semigroup [4] which is called the *adjunction semigroup of* S and T relative to ϕ and I, and denoted by $S \bigcup_{\phi} T$

Observe that the restriction on T of the natural map

$$\pi: S \to_{\phi} T \to (S \oplus_{\phi} T)^{\vee} R = S \bigcup_{\phi, I} T$$

is a topological embedding of T into $S \bigcup_{\phi \in I} T$.

Lemma 2.3. Let S and T be disjoint compact inverse monoids, $\phi: S \to T$ be an identity preserving continuous homomorphism. Then $S \bigcup_{\mathbb{R}^d} T$ is a compact inverse monoid.

Proof. Since $S \to \phi T$ is a compact inverse semigroup, the continuous homomorphic image $S \bigcup_{\phi A} T$ of π is also a compact inverse semigroup. And since the map ϕ preserves identity, the identity of S is exactly the identity of $S \bigcup T$.

Theorem 2.4. Let G be a compact group, H be a compact group, and let φ be a topological embedding from the minimal ideal M of \tilde{G}^{*} to H. Define $\varphi \in \tilde{G}^{*} \to H$

by $\phi := \psi \circ \lambda_{(G,1)}$. Then the adjunction semigroup $\tilde{G}_c^{\mathscr{A}} \bigcup_{\phi,M} H$ is a compact F-inverse monoid whose maximal group image is isomorphic to H.

Proof. Observe that $M = \{(G, g) : g \in G\}$ which is a group with identity (G, 1). By the definition of ϕ , we have that ϕ is continuous homomorphism which preserves identity. Hence the adjunction semigroup $\tilde{G}_{c}^{\mathscr{A}} \bigcup_{\phi,M} H$ is a compact inverse semigroup with the identity $(\{1\}, 1)$ by Lemma 2.3. Furthermore, it has a minimal ideal which is topologically isomorphic to H. In particular, if ψ is a topological embedding, then the minimal ideal of $\tilde{G}_{c}^{\mathscr{A}} \bigcup_{\phi,M} H$ is the set of the form

$$\{[x]: x \in M\} \cup (H \setminus \phi(M)).$$

where |x| is the *R*-congruence class of $x \in M$, in fact, $[x] = \{x, \phi(x) : x \in M\}$.

Let σ be a minimum group congruence of $\tilde{G}_c^{\mathscr{H}} \bigcup_{\phi,M} H$. Then the σ -class $\sigma_{[x]}$ con-

taining |x| is of the form

2.1
$$\sigma_{|x|} = \begin{cases} \{(A,g) : g \in G\} & \text{if } x = (G,g) \in M \\ \{x\} & \text{if } x \in H \setminus \phi(M). \end{cases}$$

Thus the σ -class σ_x -containing [x] has its maximal element of the form: $(\{1, g\}, g)$ in the first case of (2.1) and x in the second case of (2.1).

It follows that $\tilde{G}_{\to M}^{\mathcal{F}} \bigcup_{\phi \in M} H$ is *F*-inverse monoid whose maximal group image is asomorphic to H.

A partially ordered space (pospace) is a pair (X, \leq) such that X is a Hausdorff space and \leq is a closed partial order on X, i.e., \leq is a closed subset of $X \neq X$. Observe that if X is a compact pospace, then $\downarrow x := \{b \in X : b \leq x\}$ is closed for each $x \in X$.

Lemma 2.5. Let S be a compact F-inverse semigroup with a minimum group conjugate σ . Then we have

- in Let i be the natural partial order on S. Then if $s \leq t$, then $s \sigma t$.
- ii S. S. is a partially ordered space (pospace).
- m. Every σ -class of S has a unique minimal element.
- ave Two elements are σ -related if and only if they are bounded above by the same maximal element.

Proof. (i) Straightforward.

(ii) Since S is Hausdorff, it suffices to show that the natural partial order \leq is closed. Let $\{(x_{\alpha}, y_{\alpha})\}$ be a net in \leq which converges to (x, y). Then $\{x_{\alpha}\} \rightarrow x$ and $\{y_{\alpha}\} \rightarrow y$. Since $(x_{\alpha}, y_{\alpha}) \in \leq$ for each α , there exists $e_{\alpha} \in E(S)$ such that $x_{\alpha} = e_{\alpha}y_{\alpha}$ for each α . Notice that $\{e_{\alpha}\}$ cluster to a point $e \in E(S)$ from the compactness of E(S). By considering subnet, we can assume that $\{e_{\alpha}\} \rightarrow e$. By the continuity of multiplication yields that x = ey. We conclude that $(x, y) \in \leq$ and \leq is closed.

(iii) Let H be a σ -class of S and let $x, y \in H$. Then there exists $e \in E(S)$ such that ex = ey. Let s = ex + ey. Then $s \in H$ and $s \leq x, s \leq y$. Hence H is down-directed and hence a net. Since S is compact pospace, by B.4 Theorem in [5], inf H exists and $H \to \inf H$. To show that $\inf H \in H$, let m be the greatest element of H. By (i), $H = \{m \text{ and hence } H \text{ is closed since } S$ is a compact pospace. Thus we have $\inf H \in H$ and hence $\inf H$ is a unique minimal element of H.

(iv) Suppose that $s \sigma t$ for $s, t \in S$. Then s and t are contained in some σ -class H of S. Since S is F-inverse, s and t are bounded above by the greatest element of H. Conversely, if s, t are bounded above a maximal element m, then s = cm, t - fm for some $\epsilon, f \in E(S)$. Let w = ef. Then $w \in E(S)$ and ws = wt. It follows that s, t are σ -related.

Lemma 2.6. Let G be a group, S be a inverse semigroup with a minimum group congruence σ , and let $\varphi : S \to G$ be a surmorphism with ker $\varphi = \sigma$. Then every σ -class of S is of the form $\varphi^{-1}(g)$ for some $g \in G$.

Proof. Let H be a σ -class of S containing s. Then $t \in H$ if and only if $(t, s) \in \ker \varphi$ if and only if $\varphi(t) = \varphi(s)$ if and only if $t \in \varphi^{-1}(\varphi(s))$. It follows that any σ -class of S is of the form $\varphi^{-1}(g)$ for $g \in G$.

Define a map η by

$$\eta: \tilde{G}_{\varepsilon}^{\mathscr{A}} \to G, \quad (A,g) \mapsto g.$$

Then η is semigroup homomorphism and the kernel of it is equal to the minimum group congruence of $\tilde{G}_{e}^{\mathscr{A}}$.

Theorem 2.7. For any compact group G, the pair $(\tilde{G}_{\varepsilon}^{\mathcal{A}}, \eta)$ has the property that, whenever S is a compact F-inverse semigroup with a minimum group congruence σ , φ is a surmorphism of S onto G with ker $\varphi = \sigma$, and the set of all minimal elements of S forms an ideal of S, then there exists a homomorphism ξ of $\tilde{G}_c^{\mathscr{A}}$ into S

mapping the greatest element of each σ -class to the greatest element of a σ -class such that $\varphi \circ \xi = \eta$.

Proof. By Lemma 2.6, every σ -class of S is of the form $\varphi^{-1}(g)$ for some $g \in G$. Let m_g and l_g be the unique maximal and minimal elements of σ -class $\varphi^{-1}(g)$ for each $g \in G$, respectively. Define a map $\xi : \tilde{G}_c^{\mathscr{B}} \to S$ by

$$\xi(A,g) = \begin{cases} m_{g_1} m_{g_1^{-1}g_2} \cdots m_{g_k^{-1}g} & \text{if } A = \{1, g_1, g_2, \dots, g_k, g\} \in P_1(G) \\ l_g & \text{otherwise} \end{cases}$$

Then ξ is well-defined by Lemma 2.5 and Lemma 2.6. Now we shall show that ξ is a homomorphism. If $(A, g), (B, h) \in \tilde{G}^{\mathscr{A}}$ with $A = \{1, g_1, g_2, \ldots, g_k, g\}$ and $B = \{1, h_1, h_2, \ldots, h_m, h\}$, then

$$\begin{aligned} \xi(A,g)\xi(B,h) &= m_{g_1}m_{g_1^{-1}g_2}\cdots m_{g_k^{-1}g}m_{h_1}m_{h_1^{-1}h_2}\cdots m_{h_m^{-1}h} \\ &= m_{g_1}m_{g_1^{-1}g_2}\cdots m_{g_k^{-1}g}m_{g^{-1}(gh_1)}m_{(gh_1)^{-1}(gh_2)}\cdots m_{(gh_m)^{-1}(gh)} \\ &= \xi((A,g)(B,h)). \end{aligned}$$

In the other cases, we can easily show that ξ is a homomorphism using the fact that the set of all minimal elements of S forms an ideal of S. Clearly, ξ maps the greatest element of each σ -class to the greatest element of a σ -class such that $\varphi \circ \xi = \eta$. \Box

REFERENCES

- J.-C. Birget and J. Rhodes, Almost finite expansions of arbitary semigroups, J. Pure Appl. Algebra 32 (1984), 239-287.
- [2] J.-C. Birget and J. Rhodes. Group Theory via Global Semigroup Theory, J. of Algebra 120 (1989), 284-300.
- [3] J. H. Carruth, On the structure of Hyperspace Semigroup, (Master's Thesis), Louisiana State University (1963).
- [4] J. H. Carruth, J. A. Hildebrant, and R. J. Koch, The Theory of Topological Semigroups, Marcel Decker, New York (1983).
- [5] J. H. Carruth, J. A. Hildebrant, and R. J. Koch, The Theory of Topological Semigroups, Volume 2, Marcel Decker, New York (1986).

- [6] K. Choi, Birget-Rhodes Expasion of topological groups. Semigroup Forum, revised.
- [7] R. Exel. Partial actions of groups and actions of inverse semigroups, Proc. of A. M. S. 126 (1998), 3481-3494
- [8] J. M. Howie, An Introduction to Semigroup Theory, Academic Press, San Diego, 1976.
- Z. Jiang, Some notes on strongly E^{*}-unitary inverse semigroups, Periodica Mathematica Hungarica 44(1) (2002), 75-80.
- [10] M. V. Lawson, Inverse Semigroups: The Theory of Partial Symmetries, World Scientific Publ. Singapore, 1998
- [11] M. V. Lawson, Partial actions of groups, preprint.
- [12] M. B. Szendrei, A note on Birget-Rhodes Expasion of groups, J. Pure Appl. Algebra 58 (1989), 93-99

DEPARTMENT OF MATHEMATICS EDUCATION, JEJU NATIONAL UNIVERSITY OF EDUCATION, JEJU 690-781, KOREA

E-mail address: kbchoe@jejue.ac.kr