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Effective Application of Sonar Data for SLAM

Se—Jin Lee#* - Jong—Hwan Lim#*

ABSTRACT

This paper shows how effectively sonar data can be worked with approaches suggested for the in—
door SLAM (Simultaneous Localization And Mapping). A sonar sensor occasionally provides wrong
distance range due to the wide beam width and the specular reflection phenomenon. To overcome
weak points enough to use for the SLAM several approaches are proposed. First, distance ranges
acquired from the same object have been stored by using the FPA (Footprint—association) model,
which associates two sonar footprints into a hypothesized circle frame. Using the Least Squares
method, a line feature is extracted from the data stored through the FPA model. However phantom
features are sometimes generated due to the uncertainties of a sonar sensor. The feature evaluation
model is applied to reduce phantom features, which associates the extracted feature with the weight—
ed average probability of grids that are located within the area under the feature uncertainty. By us—
ing raw sonar data together with the extracted features as observations, the visibility for landmarks
can be improved, and the SLAM performance can be stabilized. Additionally, the SP (Symmetries and
Perturbations) model, a representation of uncertain geometric information that combines the proba—
bility theory and the theory of symmetries, is applied in this paper. The proposed methods have been
tested in a real home environment with a mobile robot.

Key Words : Feature Extraction and Evaluation, SLAM, Sonar Observations, Ultrasonic
Sensor

price and performance sensors such as camera

| . Introduction

Successful SLAM as well as path planning
and obstacle avoidance is required before any-—
thing else for autonomous navigation of a mo—
bile robot. Many researchers have used high
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s Faculty of Mechanical, Energy & System Eng., Res. Inst. of
Adv. Tech., Cheju National University.

and laser scanner to achieve better SLAM
results. Siegwart et al. introduced the concept
of the relative features and executed SLAM
with a laser scanner[1}. Tardos et al. sug—
gested the solution of a representation problem
of features by developing and applying SP
model [2]. Davison et al. have done the bear—
ing—only SLAM with a single camera[3]. The
SLAM with a sonar sensor is also quite worthy

of research from the commercial point of view
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that efficient SLAM with only cheap sensors is
important.

Tardos et al. extracted features through the
Hough transform with sonar data of 24 Polaroid
sensors and developed the local map joining
and loop closing algorithm for SLAMI4].
developed the 7BF
(Triangulation—based fusion) algorithm for ex—

Christensen et al.

tracting point features and tracked a robot pose
with pre—recorded reference maps of land-—
marks[5]. Kleeman et al. have realized the
landmark classification and SLAM by making
the advanced sonar ring with 48 Polaroid sen—
sors[6]. However, researches mentioned above
used high performance Polaroid sensors, and
their methods were not verified in a compli—
cated place such as home-—like environment.
Moreover, they did not confirm the SLAM sta—
bility for real environment or long time
operation.

This paper shows how effectively sonar data
of a piezo type sensor can be worked with ap—
proaches suggested for the indoor SLAM A
sonar sensor occasionally provides wrong dis—
tance range due to the wide beam width and
the specular reflection phenomenon. Chapter 11
introduces the FPA model that associates two
sonar footprints to overcome defects of sonar.
The process of the feature extraction by using
the Least Squares method is also given.
However, phantom features are sometimes
generated due to the uncertainties of a sonar
sensor. The feature evaluation model that re—
duces phantom features is explained in chapter
III, which associates the extracted feature with
the weighted average probability of grids that
are located within the area under the feature
uncertainty. By using raw sonar data together
with the extracted features as observations, the
visibility for landmarks can be improved, and
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the SLAM performance can be stabilized. The
SP model, a representation of uncertain geo—
metric information that combines the probability
theory and the theory of symmetries, is given
in this chapter. Chapter IV shows the frame-—
work of SLAM with the flowchart. The results
of the proposed methods tested in a real home
environment with a mobile robot are reported
in chapter V. Finally conclusions are drawn in
chapter VI.

Il. Feature Extraction

2.1 Ultrasonic Sensor

Some researchers have put a great deal of
effort into building good quality sonar maps[7]
—[12]. While some successful results have
been reported, most of the results were very
poor because ultrasonic sensors have consid—
erable angular uncertainty due to their wide
beam aperture, and suffer from the specular
reflection effect[10] —[12].

Ultrasonic sensors return a radial measure of
distance to the nearest object within their
range of detection. However, they frequently
fail to detect the nearest object. There are two
possible explanations for this{11]1-[12]. First,
the surface of an object may produce an echo
amplitude that is too small to be detected by
the receiver. Second, the echo pulse may be
reflected away by a surface that is not per—
pendicular to the transducer axis. Since the
surfaces of most real-world objects can be
considered specular for ultrasonic sensors, this
effect is almost always observed when the in—
cidence angle is greater than half the beam
aperture[10].

The RCD method is one simple and powerful
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means of reducing both the specular reflection
effect and angular uncertainty[13). However,
these methods can be hardly used when data
are scanned sparsely because neighboring sets
of these data have few associations. Single ro—
tating sonar is usually applied to get densely
scanned data, but it is not adequate for actual
applications because it has a slow data acquis—
ition speed. In addition, it requires a robot to
stop when acquiring scanned data.

In this study, a sonar ring was used to get
data quickly while a robot was in motion. 12
piezo—type sensors made by HAGISONIC were
mounted on the sonar ring at a regular interval
of 30° that is identical to the effective beam
aperture. As mentioned above, sparsely scan—
ned data do not allow using the existing meth—
ods of rejecting the incorrect data or those of
reducing the angular uncertainty.

2.2 FootPrint—Association Model

The FPA model allows determination of
whether two sonar footprints are associated
with a line, a point, or an arc. Sonar footprints
that correspond to a plane or a cylinder should
all be tangential to that plane or cylinder, while
sonar footprints that correspond to a corner or
an edge should all intersect at a corner or
edge point[13].

The FPA model basically estimates the pos—
sibility that two sets of sonar data originate
from the same feature. In Fig. 1, we can define
two circles centered at sensor locations with
radii equal to footprint range values, z; and z
and define the effective sonar beam aperture
as each footprint's constraint angle, represented
by the shaded fan shape. We can define a local
coordinate system, centered at sensor location
1 (point O in Fig. 1), with sensor location 2

(point B in Fig. 1) on the positive X—axis at
position x=d, where d is the distance between
the two sensor locations. The FPA model as—
sumes that if any two sets of range data, z;
and z originate from the same object, a hy—
pothesized feature should define the third cir—
cle, which is tangential to the two circles de—
fined by the footprints [13]. The general
problem is, therefore, to find radius R of the
third circle that defines the hypothesized

feature.
Maximdm Circle
Y
Rw Hyps le Frame
R
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Z
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Fig. 1. Hypothesized circles that are tangential
to the two circles defined by the footprints: (a)
possible range of radii for the hypothesized
circles without considering angle constraints,
and (b) trace of virtual circle centers that
satisfies the angle constraints.

Let ¢ be the bearing from the original of the
local coordinate system to the center of a hy—
pothesized circle. We can get ¢; using the law
of cosines such as Eq. (1):

(zl+R)2—(zz+R)2+d2)
(D

$,=cos _'( 5z, + B

Unfortunately, we cannot uniquely determine
the third circle because both R and ¢; are
unknowns. Leonard developed very simple
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method to determine the third circle[13]. That
is, he found ¢; by taking the limit as R—nfinite
and R—0 respectively. As a result, the method
can only be applied in the special case of line
and point targets. We generalized the method
by considering that bearing ¢ for each sensor
footprint must simultaneously satisfy the angle
constraint defined as an effective beam
aperture. This fact makes it possible to calcu—
late the range of bearing, i.e., ¢ur and @nax, and
the corresponding Ru» and K. The bold solid
line segment in Fig. 1, defined as the center—
line, represents possible center locations of the
hypothesized circles with radii between Rny
and Amax

It is possible to determine the bearing of a
hypothesized circle uniquely for some special
cases. If Ruin is very large or approaching in—
finity, the two footprints are clustered into a
line feature. In contrast, if Knax is very small
or approaching zero, the footprints are clus—
tered into a point. Otherwise, the footprints are
clustered into an arc feature. In this paper,
only type of line feature among them is used
in SLAM

2.3 Feature Extraction through Least
Squares

Given the large amount of spurious data
coming from specular reflections and sonar ar—
tifacts, classical robust techniques such as
RANSACN14] or the Hough transforml[4] seem
very appropriate. However, because most of
the sonar readings that correspond to the same
feature are clustered together by using the
FPA model in this paper, the information of a
line feature can be extracted from each cluster
directly by using the Least Squares fitting.

The parameters that characterize a line fea—
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ture are the middle point, the inclined angle,
the length, and the visible direction of the line.
The visible direction of a line feature, defined
as normal direction of the line, represents
which side of the line is visible. The visible
direction of a line feature is very useful in—
formation for the data association in the SLAM
Details on the feature extraction are given in
[15].

lll. Feature Evaluation Method Based
on Occpuancy Probability of Grids

Almost all the line feature can be generated
at the position of real objects by using the
FPA filtering and the LS fitting. However,
there can be unexpected features around a
moving people or a complex environment due
to wide beam width and specularity of sonar
sensors. In this paper, the feature evaluation
method is developed based on the probabilistic
association using the occupancy probabilities of
grids in order to minimize phantom features.
For this association, the occupancy probability
of grids is necessary to associate the extracted
feature with the weighted average probability
of the grids within the area of position un—

certainty of the feature.
3.1 Grid Mapping

Bayesian probability map is composed of
many grids that represent the robot's work—
space, and each grid has an occupancy proba—
bility of an object. The grids within the sonar
footprint, that are to be updated, are re—
arranged according to the distance from the
transducer location. These grids are divided
into two regions. One is defined as an empty
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region and the other is an occupied region. The
occupancy probability for the grid in the empty
region should go down, while that in the occu—
pied region should go up. An updating quantity
of the occupancy probability is determined by
using Bayes conditional probability theory ac—
cording to the distance or angle of the grid
from the sensor(9].

Bayesian model can supports a sound theo—
retical basis of a probability map. In the real
application, however, it has a critical problem
that seriously deteriorates the quality of the
resulting map([12]. That is, the Bayesian model
does not consider the specular reflection and
the multi—path effects that frequently return
incorrect range data. To solve this problem,
Lim et al. developed a mapping model with
ability to detect an occurrence of the specular
reflection effect by evaluating the orientation
probability in each grid[11]1-[12). In this mod—
el, the orientation probability is updated by us—
ing the specular reflection effect conversely.
As the information is accumulated, the proba—
bility of the orientation corresponding to real
object surface is continuously increased, while
those of the rest orientations will be
decreased. An occurring possibility of the
specular reflection and the multi—path effects
for each sonar range data can be probabilisti—
cally considered by using the orientation pro—F
babilities. It has been shown that the ori—
entation model can construct a good quality
map despite of the specular reflection effect
(11)-1121.

3.2 Probabilistic Association for Feature
Evaluation

The approach for the reliability evaluation of
a feature is based on the occupancy proba—

bilities of the grid map that is built using the
hybrid map—building model stated above. This
approach can minimize phantom features and
maintain dynamic features by using only sparse
sonar data. This association is to associate the
extracted feature with the weighted average
probability of the grids that are located within
the area of position uncertainty of the feature
as shown in Fig. 2. The formula for the
weighted average of the occupancy probability
is written as [16]:

l):‘)P R FERY
a=
£ P (x,9) @

where a is the weighted average of the proba—
bilities of grids in the area of feature position
uncertainty, N is the number of grids in the
ellipse of the position uncertainty. Py is the
occupancy probability of ith grid, and F; is the
probability of the Gaussian distribution of zs
grid.

Covariance of Line Feature

Fig. 2 Ellipse of uncertainty for a line feature.
The weighted average of the occupancy
probability is found using grids in the area of
feature position uncertainty.
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V. SLAM

The simultaneous localization and mapping
(SLAM) problem asks if it is possible for a
mobile robot to be placed at an unknown loca—
tion in an unknown environment and for the
robot to incrementally build a consistent map of
this environment while simultaneously de—
termining its location within this map. A sol—

ution to the SLAM problem has been seen as a -

"holy grail" for the mobile robotics community
as it would provide the means to make a robot
truly autonomous[17].

4.1 SP Model

The line feature is too hard to be managed
as updating the state in the EAF process. For
example, if we represent a wall as an edge in
2D, a small uncertainty in the wall orientation
gives rise to a very big variance for the per—
pendicular distance to the origin if the wall is
far away from the origin. Therefore this paper
applied SP model, a representation of uncertain
geometric information that combines the use of
probability theory to represent the imprecision
in the location of a geometric element, and ap—
plied the theory of symmetries to represent
the partiality due to characteristics of each
type of geometric element [2].

The SP model represents the information
about the location of a geometric element F by
a quadruple:

L yp=(% yp. P, Cr.By) (3)

which called the uncertain location of the geo—

metric element F, where:
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Xpp=% W@BTFPF
PF=E[PF]

Cr=E[(0;r—2)tr 5] 4

Br is the binding matrix of the geometric el—
ement, transformation f£wr is an estimation
taken as base for perturbations, Awr is the es—
timated value of the perturbation vector, and Cr
its covariance.

The perturbation vector of the SP map pw
and its covariance matrix C¥ are estimated at
time & from the constraints introduced by the
matching between local observations acquired
at time k and previously available knowledge
up to time k—1. The general linearized meas—
urement equation can be written as:

Zpm =H, i tvim

;Vb,m~N(O'Gk.me,mGI.~) (5)

Thus, the estimation equation, derived from
the classical £KF formulation, for the pertur—
bation vector of the SP map becomes:

P ) =zZm—l+Kk.—(zb.-—Hk,u3 zﬂ—l)
b Zm—l _Kk.nh-

(6)

Similarly, for the covariance matrix of the SP
map we have:

szz(I_Kk,qu,u)CZm—l (7)
where the filter gain Ky, is calculated by:

Kk.m=CZm~lH{.m
(HywClm \Hym+ Gy mSenGEln) ™t B

Precision of the results obtained by the ap—
plication of suboptimal estimation techniques,
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based on the EKF, to the estimation of a state
vector and its covariance matrix is highly in—
fluenced by the linearization performed on the
non—linear measurement equations relating the
state vector with a set of partial observations
of its structure. To keep consistency and to
avoid biases in the estimation, linearization is
accomplished after each observation is in—
tegrated into the state vector, thus obtaining a
centered state vector p*. The centered esti—
mated location vector is computed as:

e [ %l 3@
9 [;:ﬂ [},,,eamf. )

Its perturbation vector becomes the null
vector:

(2% =o. (10
Its covariance matrix is computed by:

(c™ =Q"c*e"n ™ 1n

where matix @ obtained as:

Qw=(B,J;e;{d,,,0}B£ 0 )
0 BJ:d{B% r0}BT

(12)
4.2 Observations

Actual observations of the surroundings by
using external sensors are very important to
update the full state of the map. Therefore It
is not too much to say that the performance of
SLAM is dependent on the ability of ob-
servation of the sensors. A laser scanner and a

vision sensor are very good for the SLAM be—

cause they can give good quality of information
enough to use localization even from a single
position. However ultrasonic data of a fixed
sensor ring from a single point cannot reflect
well the shape of the environment at that mo—
ment due to wide beam width and the specular
reflection. For this reason, most researches
who used sonar sensors for the SLAM have
tried to extract features from accumulated
range data. These features were used as the
targets of observations in the EKF updating
step. However, these features would not assure
the generations of rich observations for the in—
novation step in EKF because the visibility of
the features for sonar sensors is considerably
low when compared with the other sensor.

In this paper, we improved the visibility of
landmarks by using raw sonar data as ob—
servations as well as the extracted features in
the SLAM updating step. To use raw data as
observations, it is necessary to search which
landmark is associated with the raw data
through the data association. As shown in Fig.
3(a), we can infer a virtual feature using each
set of sonar data from the geometric relations
among the sonar data, robot pose, and the as—
sociated landmark. However, while the feature
can give information on both the angle and (x,
¥) pose, raw sonar data can give information
on only x and y poses because the robot's
heading cannot be determined uniquely due to
the angular uncertainty of the sensors as
shown in Fig. 3(b). Even if the angle pose
cannot be updated from raw sonar data, the
consistency of the SLAM is considerably im-—
proved when the extracted features and raw
sonar data are used together as observations.
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Fig. 3. (a) The virtual features from sets of
raw sonar data for the data association of
landmarks, (b) Variation of robot's heading due
to wide beam width of the sonar sensors.

4.3 Map Management

b > Reasonable Landmark for Update

AR

t

> Extracted Line Feature

Fig. 4. Removal of temporal features through
the occlusion test.

In this paper, the simple map management
was applied such as a removal of a short line
feature and an occlusion test. The removal of a
short line is based on the lapse of time. That
is, the line feature is removed if the length of
the line is no longer extended till a given lapse
of time has passed. Fig. 4 shows a short and
newly extracted line feature occludes the other
line feature and they are very close to each
other. In this case, though the short line is

much closer to the robot, it is reasonable to
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remove the short line because it is less reli—
able than the long and old one. This can be
done by occlusion test, and can keep the map
in high reliability. Moreover, the occlusion test
is very useful for the SLAM in that this makes
it possible to avoid the ambiguous data associ—
ation with more than tow nearby features.

4.4 Framework of SLAM

FASURE L0 RAUTRIN

Data Clustering wa | -
A modal i

¥ .
Lesast Souwres fittmg ;

Feature Lraluation
via Grid Map i

Fig. 5. Flowchart of SLAM based on a SP map.

Fig. 5 shows the flowchart of the sonar
SLAM based on a SP map. Two kinds of the
observations are applied to update the state of
the SP map, the extracted features through
FPA model and the raw sonar data themselves.
Sets of sonar data that support the same ob-—
Ject are clustered together through the FPA
model, and then the line features are extracted
from the clusters by using the Least Squares
fitting method. The reliability of the extracted
line feature is evaluated by the grid
association. Finally, the evaluated line feature
is used as landmarks in the update step of the
EKF through the data association and the oc—
clusion test.

The raw sonar data as second observations

are associated with environmental map, so that
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they make virtual features that are used as the
landmarks for EKF step. The EKF step updates
the full states of the SLAM by using the SP
model that combines the use of probability
theory and the theory of symmetries to repre—
sent uncertain geometric information.

V. Experimental Results

The data clustering by the FPA model, the
feature evaluation by the grid probabilities, and
the SLAM stated above have been implemented
and tested in a real home environment with a
real robot. We used the Pioneer 3DX robot
with a ring of 12 HAGISONIC sonar sensors.
The transitional and rotation speeds of the ro—
bot were approximately 0.2m/s and 15deg/s
respectively. In order to test the performance
of the data clustering and the feature evalua—
tion, the robot was run followed the guided
trajectory in 4.3mX3.6m home—like experiment
that is composed of sofas, table, clothes chest,
bookshelf, and fire extinguishers.

TR e T e e T~
Saniomt - o e g
{a) )

Fig. 6. (a) Experimental environment and
robot's path. (b) Scanned raw data and filtered
data from the FPA model.

In Fig. 6(b), the circles represent scanned

raw sonar data during the robot's exploration.

As shown in Fig. 6(a), the total trajectory of
the robot was about 19.2m, and the traveling
time was approximately 2.5 minutes. During the
robot's motion, the sonar ring acquired range
data with frequencies of 10Hz. In Fig. 6(b),
small asterisks (red color) represent filtered
sonar data through the FPA model. As shown
in Fig. 6(b), raw sonar data are scattered due
to the wide beam aperture and the specular
reflection effect. However, most of the filtered
data are located around the position of real
objects.

)

Fig. 7. Occupancy grid map and discrete
features. (a) Before applying the probabilistic
association. (b) After applying the probabilistic
association.

Fig. 7 shows the probabilistic grid map gen—
erated from the filtered sonar data using FPA
model, and the size of a grid is 15 cmX15 cm.
Line features were extracted and saved from
the data clusters for every 50 cm movement.
The probabilistic association was also executed
with average frequency of 0.1 Hz. Fig. 7(a)
shows all extracted features by LS fitting be—
fore applying the probabilistic association, and
Fig. 7(b) shows the features evaluated by the
probabilistic association using the grid map.
Although some phantom features are appeared

at the free space due to moving people and
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wide beam width and specularity of sonar in
Fig. 7(a), they were removed clearly by ap—
plying the probabilistic association as shown in
Fig. 7(b).

L33

Fig. 8. Odometry and estimated trajectories in
a real home environment.

Another experiment for testing the perform—
ance of the SLAM was carried out in a 10m X
10m guest house at POSTECH. The total tra—
jectory of the robot was about 305.99m, and
the total traveling time was about 40 minutes
with an average speed of 20 cm/s. During the
robot's motion, the sonar ring acquired range
data with frequencies of 4Hz. Fig. 8 shows the
experimental environment. In the figure, the
blue and red lines represent the odometric and
estimated trajectories respectively.

Fig. 9 shows the final feature map of the
experimental environment, which composed of
52 line features. One can see that almost all
the boundaries of true objects are re—
constructed as line features (blue lines).
Position errors of the robot were bounded
within a reasonable range, so that the proposed
SLAM can be applied to practical navigation of
mobile robot.
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Fig. 9. Result of feature map.

Vl. Conclusion

This paper has presented new approaches for
SLAM, and shown how effectively sparsely
scanned sonar data can be used for the indoor
SLAM. Sets of sonar data acquired from the
same object have been clustered by using the
FPA (Footprint—association) model, which as—
sociates two sonar footprints into a hypothe—
sized circle frame. Line features were, then,
extracted from the stored clusters through the
Least Squares method.

The feature evaluation model was applied to
reduce phantom features, which associates the
extracted feature with the weighted average
probability of grids that are located within the
area under the feature uncertainty. By using
raw sonar data together with the extracted
features as observations, we found the visibility
for landmarks can be improved, and the SLAM
performance can be stabilized.

Additionally, the SP (Symmetries and Per—
turbations) model, a representation of uncertain
geometric information that combines the prob—
ability theory and the theory of symmetries, is
applied in this paper. The experimental results
have shown that the performance of the pro—
posed SLAM is quite good enough to apply it
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to a practical indoor navigation of a mobile ro—
bot with only sparsely scanned sonar data.
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Fig. 10. Results of maps after completing (a)
one loop, (b) two loops, and (c) three loops.

However, as shown in Fig. 10, phantom fea—
tures tend to appeared over time. It is not
awkward when considering its wide beam width
and specularity of a sonar sensor. Therefore,
an algorithm for reducing the unexpected fea—
tures should be developed in the future.
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