Bull. Mar, Res. Inst
Cheju Nat. Univ., 16:1~13, 1992 WHA FEEHTE 16:1~13, 1992

Theory of Forced Shelf Waves over a Double Shelf
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The first order wave equation over a double shelf has wind stresses on both coastal
boundaries and wind stress curl forcing across the shelf. In the Yellow Sea, the effect
of wind stress curl can be neglected as a forcing of shelf waves. The decay distance of
Kelvin waves are much greater than that of continental shelf waves so that Kelvin waves
are transmitted nearly intact through the northern embayment. The numerical method of
characteristics has been modified to accomodate wave propagation of opposite directions.

The Kelvin wave makes a substantial contribution to sea level fluctuations. However, it
contributes almost nothing to alongshore velocity. Velocity is due mainly to the presence

of continental shelf waves, among which the 1st modes contribute the most.

Key words : o} §-%-3} (continental shelf wave), 3dl3}(kelvin wave),
okakd ]85 (double shelf)

Introduction has been developed and applied to the

Yellow Sea to reproduce sea level and ve-

The theory of coastally trapped waves locity fluctuations during January to March
over a double shif topography shown in the 1986 (Pang, 1987: Hsueh and Pang, 1989).
Yellow Sea has been recently studied, and The application has been successful,

based on the theory, a long wave model specially in reproducing qualitatively the
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upwind flow bursts in the Yellow Sea
trough. The success make the model to be
used to address the dynamices of the
Yellow Sea circulation. However, more
processes should be added to develop the
theory and the wave model. Some of them
have been worked for free waves in Pang
(1991, 1992) and some of them are going
to be worked for forced waves in this

study.

A forced wave equation in frictionless
case is first derived by Gill and Schumann
(1974) for a single shelf and friction is
added incurring an infinite coupled set
of modes by Brink and Allen (1978).
The fully coupled set of wave equations
is first solved by integration along the
characteristics by Clarke and VanGorder
(1986). The wave equation for a double
shelf is derived and solved by Pang (1987).
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Fig. 1. Map of the Yellow Sea, Depths are in meters. Dots mark the locations of observation
for the period of Januvary 10 to Aprl 12, 1986,
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The method of characteristics used to solve
it is basically similar to that found in Clarke
and VanGorder (1986), except that the
integration proceeds in time increment to
accomodate wave propagation to the north
and south (Clarke and VanGorder used a
distance increment, which is possible for
only one-directional wave propagation.) and
that for a given resolution in v, time in-
crement is much smaller that Kelvin waves
are included (Kelvin wave is not included in
most previous shlf wave models. ).

We have chosen the Yellow Sea to
examine a double shelf system. Fig.1
shows the bottom topography of the Yellow
Sea and the locations of abservation. The
Yellow Sea is essentially a north-south
running shallow channel with a double shelf
cross section. The study of long waves in
semienclosed channels with flat bottoms
dates back to the early 1900s (Taylor, 1921).
In the late 1990s,

studied over bottom porfiles characterized

long waves have been

by a reversal slope encountered across
submarine banks and trenches(Louis, 1978:
Mysak et al. 1979: Mysak, 1980: Mysak
and Willmott, 1981: Brink, 1983). However,
the addition of Kelvin waves renders the
circumstances in the Yellow Sea different.
The purpose of the present study is to de-
velop the existing basic theory for forced

shelf waves over a double shelf.

The Process of Theory

The process by which the wave model
has been made is shown in Fig. 2. First
step is to solve the free problem, in which
bottom topography is incorporated. We
have obtained the dispersion relation, from
which the eigenvalues Co (phase speeds
here) are calculated, and eigenfunctions Fa
for a double shelf as shown in the Yellow
Sea. In the next forced problem the first
order wave equation is derived for a double
shelf. By integration of wave equation, the
wave function ¢. is solved. Geometry,
frictional effect, and wind stress are
incorporated in the wave equation. Finally,
the eigenfunctions and wave functions are

combined to get the sea level and velocity.

First Order Wave Equation

For long shelf wave motions influenced by
winds, small perturbations to a barotropic

ocean satisfy the equation.
(HP,)  + (P,) ,-fH,P,— %P,=f -5 @

In this equation, x, v, t, p, & f, r. H,
7* and r’ refer respectively to cross-shelf
distance

(eastward positive), alongshore

distance (northward positive), time,

perturbation pressure divided by mean water
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Free Problem

double shelf topography

Dispersion Relation

Eigenvalue C,

Eigenfunction Fj(x)

Forced Problem

Geometry
Friction

Wind Stress

Wave Equation

Wave Functions ¢

e Prediction

~———

Sea Level P=XFy(x)én(y, 1)

Velocity V=3 Fax (X) ¢a (y, t) /£

Fig. 2 Chart of the processes by which the wave model is made
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density, acceleration due to gravity, Coriolis
parameter, bottom resistance coefficient,
water depth, kinematic wind stresses in x
and y direction at surface (the wind stresses
divided by mean water density). Subscripts
indicate derivatives.

Fig. 3 shows a schematic representation of
the coordinates system and geometry of
double shelves of linear depth profile, which
is adapted for the Yellow Sea. The
coordinates z refers to the vertical distancd
(upward positive). The origin of coordinates
is set at the sea surface on the intersection
of the trough and southern boundary. Shelf
1 and shelf 2 are placed in -B,<x<0 and
0<x<B, respectively. So, the linear bot-

tom topography (H) can be set as follows :

x+L,

H,=H, T -B,<x<0
1
in shelf 1 (China shelf)
HX) =
H=-HX 2 -p<x<B,

2

in shelf 2 (Korea shelf)

At the coastal boundaries, the no-flux
boundary condition is applied, which means
that the depth integrated offshore velocity
1991, 1992). At the

boundary between two shelves, the con-

vanishes (Pang,
tinuous boundary conditions of pressure and

transverse velocity are applied, as follows :

Pm+%l-pl,+ﬂ:’1y=f1 at x=-B, (3-1)

h
P,=P,
Plxt+fPly=Pm+fP2y

at x=0 (3-2)
at x=0 (3-3)

Pm+—{;pz,+fpz,=f% at x=B, (3-6)

Setting P, y,t) =X Fa(x)#(y, t) vyields a
Sturm-Louville problem for frictionless

eigenfunctions Fa(x) as follows :

(HFM),+Ciann— %Fn=0 @)
Fpat cinf1n=o at x=-B, (5-1)
Flo=Fap at x=0 (5-2)
Fioe=Fpux at x=0  (5-3)
Fppt Cinfh=0 at x=B, (5-4)
where Fi:;, F2, ca are eigenfunctions in

shelves 1 and 2, the phase speed of nth
mode, respectively.

Multiplying (1) by Fa and (4) by P: and
substracting them yields

F, (HP,) ,— P, (HF,,) s+ (rP,),F.
P
+fH,F, (P,—C—') =fF, (t]—1}) 6)
By integrating (6) from -B, to B, with the

(2) and (5), and

expanding the pressure in terms of inviscid

boundary conditions

eigenfunctions with the orthogonality con-

dition (Pang, 1992), it follows that, for
mode n,
_Fut

C. +¢ny+ mgmamn ¢m=b1n - t7(-B))

B
_BF,,- (tI—tdx (7)

~by - B~ |

where
amn=f .lrn[(-r *Fomy - Fy) l:.
07  Fady Fad] 8-1)
‘B| mx/ x a
bln_ Fn (_Bl) (8‘2)
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Hi{x)=Ho(x -L:)/Li

y northward

X
eastward

Ha(x)=-Holx- L2)/ L2

Fig. 3. Schematic representation of the coordinate system and the double shelf topography,
which represents the Yellow Sea. The coordinates X, ¥, and z refer to the cross—shelf

(eastward positive), alongshore (northward positive), and vertical directions (upward
positive), respectively. The greatest water depth is Ho. B, and B, are the the locations
of no—flux boundary where the water depth is 3 times the Ekman layer thickness

(Mitchum and Clarke, 1986).

by =2 )
B,

n=CH-F)|%+ ("B, Flax (8-4)
-B, -B,

Fo's and ¢u’s satisfy the boundary
conditions and an infinite set of coupled
first order wave equations, respectively. bia
respectively, wind-coupling
and B,

frictional decay coefficient and ama

and bz are,

coefficients at x=-B, amn IS a

is a
frictional coupling coefficient to mode m.

The wave functions are coupled through

friction. If there is no friction (r=0), am=
0 and the modes are decoupled. The re-
ciprocal of |am| gives the decay distance
for amplitude of the nth wave mode in the
direction of wave propagation. For r=3x10"*
m/sec, China shelf with B,=300km, Korea
shelf with B,=120km, the trough depth Ho=
100m, coastal depth=320m,
distance of Kelvin wave is 0(10, 000km) and

the decay

that of the Ist continental shelf wave mode
is 0(100km).

using the method of characteristics.

Equation (7) can be solved
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As shown in Pang (1991, 1992), there are
two infinite sets of wave mode over a
double shelf topography. We will use the
positive (negative) n for the set of postive
(negative) phase speed, which propagate
southward (northward) along shelf 1 (2),
For the Yellow Sea, the former (latter) will
The first

modes (n=1, -1) are Kelvin waves and the

be called Korea {(China) waves.
other modes are continental shelf waves.
The first order wave equation (7) over a

double shelf has wind stresses on both

coastal boundaries and wind stress curl

.00

-1.00

forcing across the shelf, Figure 4 presents
the comparison of the wind stress curl term
wind stress term. In calculating the wind
stress curl, Fa is taken to be unity,

representing the normalized value at coast,
so that the wind stress curl term is over-
estimated. By comparing, the wind stress
curl is negligible except at a couple of times
when the wind stress curl term shows a
spike. The spikes are few in number.
Thus, the effect of wind stress curl can be
neglected as a forcing of shelf waves in the

Yellow Sea.

(A)

0.00 WAWWV—W\\W
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WIND FORCING AMPLITUDE (N/m?)

50. T s

TIME (DAYS)

Fig. 4 Comparison of the wind stress curl terms by north-south component (B) and east-
west component (C) with the wind stress term (A).

Numerical Method of Characteristics

If we limit the problem to a finite number
of modes, 2j, (7) can be written as

follows :

-%+ Byt amn Pa=GCa (7, 1) )

n

where the forcing function Ga (y,t) is defined

as follows :

Gn (Y. t) = Z’; amn¢m+b1n . Ty(“B\) _bZn . T'(Bg)
-iG=0)

except n
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1 . ¢4z’ dr*

B,

+ S_BIF,, ) (10)

Along the characteristics defined by Y,=-c,
(Y, (), (9) yields

Bu ™ Calnay =—C,G; (Y, (1), 1) (11

Multiplying (11) by the integration factor

as
B0 =exp({ (-c) (1, 1) a,u(¥, () ate)

and integrating from t—4t to t gives
¢n{Yn(t).t)}=¢..{Y..(t—at).t—at)E(t—at)/E(t)

+ g' Cca{Ya (t*) ) Ga{Ya (t%), t*} ua {Ya (t*) }dt)
(12)

where Y, (t%) =Y, (t) + S:c (Y, ()} dt.

Using the trapezoid rule to evaluate the
integral in (12) gives the following difference
formula relating ¢,{Y, (t), t)} =4, (Y, (t—st, t—
at)) .

% {a(®), O} =4, (Y, (t—-5t), t—3t).
Xexp((6t/2) - (ca{Ya(t)} - aea{Ya(t))
tea{Ya(t—0ot)} - ann{Ya(t—ot)})

—6t/2) - ca{Ya()} - Ga{Yalt), t)
—(6t/2) - ca{Ya (t—5t)) - Ga{Ya(t—4t), r—5t)
Xexp((3t/2) - (cal¥a(t)} - aua(Ya(t))

tca{Ya(t—6t)) - an{Ya(t—ot)}) (13)

where Yo (t—st) =Y, )+ (6t/2) - (ca{Ya(t)}
+Cn{Yn (t—ét)}].
Using the equation (10) enables (13) to

be written as the matrix equation as
follows :

r-(Ir—(et/2K)=q

where I is a row vector with the element
#a(Y,t) and I is the identity matrix with j
by j. The matrix K is given by

0
Caf{Ya(t)} - amn

km=[ when m=n

when m=#n

and Q is a row vector given by

Qa=-(6t/2) ca{Ya t)} [blnTy (-B)) — byt? (By)

B,
: S_BFn(ri—r;) dxJe=t+ @ {Ya (t—5t), t—

rn
5t} Xexp [ (61/2) (ca{Ya (t) }aun{Ya (t) } +cs
{Ya(t—8t) }am {Ya (t—3t)))) — (3t/2) - ca{Ya
(t—st)}) - Gu{Yn(t—ﬁt),t—Jt)XEXD((M/Z) .
(calYa(®)} - @na{Ya(t)} +CalYa(t—6t)) - g

{Ya(t—5t)})]) (14)

With the restriction that e= (Kst/2)2= (6t)2
1 (Kmax) 2/4 < 1.

error &

We have within a small

(I-OY2K)'=(I + (6t/2)K).
Consequently, the solution for b is

r=Q- (I+(4t/2)K). (15)

In addition, &t must be small enough so
that there is the same resolution in t as in

y and aliasing is prevented.

Since, over a double shelf, there are two
infinite wave sets propagating in opposite
directions, we need two boundary
conditions. Fig. 5 shows (A) a analytical
solution and (B) a numerical solution of the
first two modes over a double shelf (300~
120km) channel of 500 km length shown in
Fig. 6. Fig. 6 shows the model channel of

straight coastlines in replacement of the
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Yellow Sea, which is used in the previous
application. The solid curves represent the
($-1)
propagating in the (+) y direction. So, its

time series of the wave function
amplitude increases from the southern

boundary f(transection a at y=Okm) where
it is set to be zero to the northern boundary
(transection b at y=500km). On the other
hand, the dashed curves represent the time
series of the wave function (¢,) propagating
in the So,

increases from the nerthern boundary where

(-) y direction. its amplitude

it is set to be zero to the southern
boundary. The analytical and numerical
solutions show discrepancies only at the

beginning. The initial difference is due to

the fact that the analytical solution has only
boundary conditions while the numerical
solution has both boundary and initial

conditions. Initially, sea level fluctuation is
set to zero everywhere for the numerical
solution. The duration over which the initial
difference persists depends upon the phase
speed ca. and is the time for the waves to
(t=-y/ca

propagating (+) y direction and t= (500-y)/

travel the channel for waves

cn for waves propagating (-) y direction).
After the
affected only by the boundary conditions

initial period, solutions are

and agree with each other, which implies

that the numerical method works.

w -0 (A)
?—’ \ e A -- - /\
30.0 > . [ ~ g D-re h -7 ~ -
a . ~ . ~
= - “\\\\\__,////F T “\\\\\_ﬂ,////ﬁ o
<
-1.0 +
Wio (8)
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- 4 . -¢L' "»w P
io’o - (1S - 4 [ 3 - .
L~ 4 4 - -

[}
o

TIME

(DAYS)

Fig.5. (A) analytical and (B) numerical solitions of the first two wave functions: ¢,
(dashed lines) and ¢-1 (solid lines). The amplitude is non dimensional. A northward
(southward) propagating wave function ¢-1 (#,) is amplified from the transection a ®)
to the transection b (a) shown in figure 5. Numerical solutions are set to zero initially.
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CHINA

KOREA

eI

Fig.6. A schematic representation of the insertion of the model channel in replacement of
the Yellow Sea. The transections a and b mark the ends of the channel. B, D, F,
and I, which lie along the model trough, are the locations of observation for the period

of January-Aprl, 1986.

Fig. 7 and 8 show, respectively, the sea
level and alongshore velocity fluctuations
along the Korea coast, calculated by a
simple sinusoidal wind forcing ¥=1, - cos (¢
The values of 7, ¢,
10"' Newton/m?, 10 * m™, and

As wave function, the amplitude

ytwt) . and o are,
respectively,
107 sec .
of sea level and alongshore velocity

increases from the southern boundary to the
northern boundary along the Korea coast.
The Kelvin wave mode makes a sunstantial

contribution (about 80%) to sea level

...10__

fluctuations. After the first 4 modes are

included, there is no perceptible difference
in the solutions. The sea levels calculated
with the inclusion of the first 4 modes are
thus a good approximation to the total
solutions. It means that sea level

fluctuations are due to mainly to the
existence of Kelvin waves. However, Fig.
8 shows the Kelvin wave modes contribute
almost nothing to alongshore velocity. Ve-
locity is due mainly to the presence of
continental shelf wave modes,

the 1st modes contribute the

among which

most.
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2 : (A)

SEA LEVEL AMPLITUDE (m)
A (

1 b
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Fig. 7. Time series of calculated sea level fluctuations along Korea coast with inclusion of

the first (A) 2, (B) 4, (C) 6 wave modes, driven by a simple sinusoidal wind forcing
t’=r, - cos(fy+wt), where 7o, £, and  are 10" Newton/®, 10*m”, and 107 sec™,
respectively.

-31 (A)

AMPLITUDE (m)

VELOCITY

TIME (DAYS)
Fig. 8. Time series of calculated velocity fluctuations along Korea coast with inclusion of

the first (A) 2. (B) 4, (C) 6 wave modes, driven by a simple sinusoidal wind forcing

t’=t, - cos({ytwt), where 7o, ¢, and o are 10* Newton/x, 10*m™, and 10°% sec™,

respectively.
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Discussion and Conclusion

The first order wave equation over a
double shelf has wind stresses on both
castal boundaries and wind stress curl
the

effect of wind stress curl can be neglected

forcing across the shelf. However,
as a forcing of shelf waves in the Yellow
Sea.

The decay distance of Kelvin waves is
much greater than that of continental shelf
waves. Therefore, Kelvin waves are
transmitted nearly intact through the
nortnern embayment while continental shelf
waves are not. It suggests that the northern
embayment of the Yellow Sea is necessary
to be modelled for sea level hindcast, but
not for velocity hindcast. Fig. 9 shows the
comparison of (A) sea levels and (B)
velocities, which are obtained with and
without the modeled northern boundary
region.

The rumerical method of characteristics
proceeds here in time increment to
accomodate wave propagation of opposite
directions and work fine.

The Kelvin wave makes a substantial
contribution to sea level fluctuations.
However, it contributes 2lmost nothing to
alongshore velocity. Velocity is due mainly
to the presence of continental shelf waves,
among which the Ist modes contribute the
most.

Although the wave model has been

improved so far, it sould be improved more

_12_

for better reproductions, specially in mod-
elling the northern embayment. It is a fu-
ture task, however, we understand that the
long-period fluctuations of sea level and
alongshore velocity in the Yellow Sea are
basically due to the large scale ocean re-

sponse driven by winds.
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