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ABSTRACT. In this paper we study the non-smooth optimal control problems for
the Keller-Segel equations presented by Keller and Segel(Ref. 5). We obtain the
necessary conditions of optimality by introducing the approximating control problem.
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1. INTRODUCTION

This paper is concerned with the optimal control problem
M'u}‘imize J{u) (P)

with the cost functional J(u) of the form -

T T
I = [ Iy - vallaiore + [t we 2.1 @)

where y = y(u) is governed by the Keller-Segel equations

By =ady —bV-{yVp} in O x(0,T],
dp=dAp+ fy—-gp+vu  in 2x(0,7T),
Oay=0,p=0 on 3 x(0,T],

y(z,0) =yo(z), P(z,0)=po(z) in

(K-5)

Here, € is a bounded region in R? of C3 class. 8, denotes the time derivative.
a, b, d, f, g are given positive numbers and v is a given nonnegative number. u > 0
is a control function varying in some bounded subset Uaq of L2(0,T; H'*(Q)), ¢
being some fixed exponent such that 0 < e < 1/2. n = n(z) is the outer normal
vector at a boundary point z € 8 and 3, denotes the differentiation along the
vector n. yo(x) and po(z) are nonnegative initial functions in L*(Q) and in H'*5(Q),

_13_



SANG-UK RYU

respectively. y, p are unknown functions of the Cauchy problem (K-S). Finally, {
is a lower semicontinuous and convex function on H!+¢ (Q).

The Keller-Segel equations (K-S) was introduced by Keller and Segel (Ref. 5) to
describe the aggregating pattern formation of amoebae by chemotaxis. Unknown
functions y = y(z,t) and p = p(z,t) denote the concentration of amoebae in  at
time ¢t and the concentration of chemical substance in  at time t, respectively. The
chemotactic term —bV - {yVp} indicates that the cells are sensitive to chemicals
and are attracted by them, and the production term fy indicates that the chemical
substance is itself emitted by cells.

Many papers have already been published to study the control problems for
nonlinear parabolic equations(Refs. 1, 2, 3, 6, and 7). In the recent paper (Ref. 8),
Ryu and Yagi studied the optimal control problem for the Keller-Segel equations,
that is, the existence of optimal controls and the necessary conditions of optimality
were obtained by showing the differentiability of the cost functional with respect
to the control. In the present paper we study the case which the differentiability is
not guaranteed. In this sense, this paper may also be considered the generalization
of Ref. 8 as the optimal control for a parabolic system of non-monotone type.

This paper is organized as follows. In Section 2, we shall formulate (K-S) as a
semilinear equation in a product Hilbert space. Section 3 is devoted to obtaining
the necessary conditions of optimality for (P) by introducing the approximating
control problem.

2. THE FORMULATION OF THE PROBLEM

Let Ay = ~aA + a and A2 = —dA + g be the Laplace operators equipped
with the Neumann boundary conditions, A;(i = 1,2) are linear isomorphisms from
HY(Q) to (H'(2))". As noticed in Ref. 9, D(A?) = H?(Q) for 0 < § < 3/4, and
D(A?)= H®(Q) for 3/4< 0 < 3/2.

We introduce two product Hilbert spaces V C H as

V= HI(Q) x D(A;+E/2) and H = L2(n) x D(Agl+s)/2),

respectively, where ¢ is some fixed exponent € € (0,1/2). By the identification of
H and its dual H', we have: V C H = H' C V'. It is then seen that

V = (HY(Q)) x D(AY?).

We denote the scalar product of H by (-,-) and the norm by | -|. The duality
product between V' and V which coincides with the scalar product of H on H x H
is denoted by (-,-), and the norms of V and V' by || - || and Il - ll+, respectively.

We set also a symmetric sesquilinear form on V x V:

oY, Y) = (4%, A%5) . + (4570, A43*%) ., ¥ = (i)’f' = (g—) €V.
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Obviously, the form satisfies:

la(v,¥)| < MIYIIYI, V.Y eV, (a.i)
a(Y,Y)248|Y|?, YeV (a.ii)

with some constants M > 0 and § > 0. This form then defines a linear isomorphism

A= (1‘:)1 22) from V to V', and the part of A in H is a positive definite self-

adjoint operator in H with the domain D(4) = D(A,) x D(A(23+‘)/ %,
(K-S) is, then, formulated as an abstract equation

Y +AY = F(Y)+U(t), O0<t<T,
{ + (Y)+U(t) <t )

Y(0)=Yo

in the space V'. Here, Y’ denotes the time derivative and F(:): V = V' is the

mapping Fiyy < 0V WV +ay y=(Y)ev 21
(Y) ( fy )’ (p> &b

U(t) and Y, are defined by U(t) = (m?(t)) and Yp = (::), respectively.
As verified in Refs. 8, F(-) satisfies the following conditions.

(fi) For each 5 > 0, there exists an increasing continuous functions
én: [0,00) — [0,00) such that
IF(Y <ollYll + (YD), Y eV

(£.ii) For each > 0, there exists an increasing continuous functions ¥, : [0,00) —
[0, 00) such that

IFT) = FOO)ll. < all¥ = Y1+ (IF1+ 1Y 1+ Dea(IF [+ YDY -Y], ¥, YeV.

According to Theorem 2.1 of Ref. 8, we have the following result.

Theorem 2.1. Let 0 < yo € L*(0),0 < po € H'™(Q), and let 0 < u €
L2(0, T; H'+£(82)). Then, (K-S) possesses a unique nonnegative local solution

0 <y e H'(0,S; (H'(®))) nC(o, S); L)) N L*(0,S; H'(Q)),
0 < p e HY(0,S; HE(Q)) NC([0, S]; H'+¢(Q)) N L*(0, S; H1+(Q)).

The time S € (0,T) is determined by the norms [lul 20,7y H1+<(92))s llyoll L2 () and
ool 2+ (5)-
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3 NECESSARY CONDITIONS OF OPTIMALITY

In this section, we obtain the necessary conditions of optimality for the Problem
(P). We denote the scalar products in V and V' by (-, )y and (-, -}y, respectively.
If we set U = L%(0,T; M) and

Usa = {(2) eU;ue LZ(O,T; HH'E(Q)), u>0, "u"Lz(o_T;ch) < C} ,

then U4 is closed, bounded and convex subset of «. The problem (P) is obviously
formulated as follows
Minimize J(U), (P)
U€Uqa

where the cost functional J(U) is of the form
T T
JHU) = / DY (U) — Yal?dt + / LU)dt, U €ty
0 0

Here, Y(U), U € U,g4, is the weak solution to (E) on a fixed interval [0,T). D:
H — H is a bounded linear operator defined by D(¥) = (§) and Ys = (%) is a
fixed element of L*(0,T;H) with yq € L?(0,T;L3()). L : H — R is a lower-
semicontinuous and convex function defined by L(2) = I(u).

It is verified in Ref. 8 that there exists an optimal control U € U4 for (P) such

that J(U) = Jon (U).

To derive the optimality conditions satisfied by an optimal control U, the map-
ping F(:): V — V' defined by (2.1) must be Fréchet differentiable, and some es-
timate for the derivative F'(Y')(") is necessary. In a direct calculations, F(Y) is
Fréchet differentiable with the derivative

F(Y)Z= (‘bv' {yVw} —ov- {ZV”}) Y = (z) Z= (:)) ev.

fz

Moreover, as verified in Refs. 8, the following properties are satisfied.

(E.iii) For each 1) > 0, there exists a constant p,, v : [0,00) — [0, 00) such that

nllZIPI + Co(IY T + Dun(IYDIZIIPI, Y, 2, PeV,
KF'(Y)Z,P) < ¢ nllZIIPI + CoUIY Il + Dey(IYDIZIIPl, Y, 2, PeV,
v(IYDIZIIPY, Y,z Pev.

(fiv) F'(-) is continuous from H into L(V,V").
Let U be optimal control for the problem (P) and Y is the solution to (E) with

respect to U. We consider the following approximate problem:

Minimize J(U) (P.)
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with the cost functional J.(U) of the form

T T
.um=L|Dwm—xma+dema

T
+/{W—7P+W—Umm,Ue%¢
0

Here, L.(-) : H — R is defined by
L.(U) = inf{|U — V|*/2e + L(V);V € H}. (3.1)

First of all, we show the existence of the optimal solutions for (Pe)-
Lemma 3.1. There exists an optimal control U, € Uaq for (Pc).

Proof. As the proof is standard (cf. Refs 2 and 6), we will only sketch.
Let {US} C Uyq be a minimizing sequence such that nlim J(UE) = ng&n J(U).
— 00 ad

Since {U¢} is bounded, we can assume that U7 — U, weakly in L?*(0,T;H). For
simplicity, we will write Y;¢ instead of the solution Y (Ug) of (E) corresponding to
U;,

(YEY + AYE = F(Y;) + Ui(t), 0<t<T,
YZ(0) = Yo.

As in the estimates of Theorem 2.1 in Ref. 8, we infer that the sequence {Y;7} is
bounded in L?(0,T; V) N H'(0,T;V'). Therefore, choosing a subsequence if neces-
sary, we can assume that

Yt - Y. weaklyin L%*(0,T;V),
(YE) — (Ye) weaklyin L?*(0,T; V).

Since V is compactly embedded in H, it is that
Y: — Y, strongly in L%(0,T; H). (3.2)

Hence, by the standard argument, we infer that Y, is a solution to (E) with the
control U., that is, Y; = Y(U). On the other hand, (f.ii) implies that, for each
Z ec(0,T);V),

T
AKHﬁm—Hmzwm

T
SL{WWMMWMHD%mﬂm+MMﬁM—MMMH
+nllY(6) ~ Y(OUMZON}dt = hin + 20
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Then, Since Y;; — Y; strongly L%(0,T;H) it follows that limp_o /12 = 0. Sim-
ilarly, limp—oo < C|Z||L2(0,;v). Since n > 0 is arbitrary, this shows that
F(Yg) — F(Y.) strongly in L?(0, T; H). Hence, by the uniqueness, Y is the weak
solution of (E) corresponding to U. Since Y;f —Y; — Y. - Y, strongly in L%(0, T; H)
and (3.1) is lower semicontinuous, we have:

. . o
Jin Je(U) < Je(U;) < lim J (US) = Join Je(U).

Hence, J,(U,) = Urgli}:d J(U). O

Lemma 3.2. Fore — 0, we have

U.—U strongly in L*(0,T; H),
Y. 2 Y strongly in L*(0, T; H).

Proof. For any € > 0, it follows from the inequality L.(U) < L(U) that
Je(Ue) < J(U) < J(D).

Hence
lim Je(Ue) < J((U). (3.3)

On the other hand, since {U,} is bounded subset in L?(0,S;H), we assume that
Ue - U* weakly in L%(0,T; H). Following the previous Lemma’s proof, we see
that Y. — Y* strongly in L?(0,T;H) and Y. — Y* weakly in H!(0,T;V') n
L2(0,T; V). Since J, is lower semicontinuous in L%(0,T;H),

lim J.(Ue) > J(U*) 2 J(D)

e—0

and by (3.3)
T
lim / Yo =V + |U. — U2t = 0.
e—0 0

Hence, we infer that Y = Y*, U = U* and so the conclusions of Lemma 3.2. [

For the differentiability of Y/(U) with respect to U, we have the next statement
(see Ref. 8).

Lemma 3.3. Let (a.i), (a.ii), (£i), (fii), (£.iii), and (f.iv) be satisfied. The mapping
Y : Usa = H'Y(0,T;V') NC((0, T);H) N L2(0,T; V) is Gateauz differentiable with
respect to U. For V € Upa, Y'(U)V = Z is the unique solution in H'(0,T;V’) N
C([0,T); H) N L%(0,T; V) of the problem

Z'+AZ-F(Y)Z=V({), 0<t<T, (3.4)
Z(0)=0. ’
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Lemma 3.4. Let U, be an optimal control of (P.) and let Y. € L*(0,T;V) N
C([0,T); H)NH'(0,T; V') be the optimal state; that is, Y, is the solution to (E) with
the control U.. Then, there exists a unique solution P. € L*(0,T;V)NC([0, T}, H)N
HY0,T; V') to the linear problem

{ —(P.Y + AP, - F'(Y,)'P=DY, - Yq+Y.-Y, 0<t<T, 35)

P.(T)=0

in V. Moreover,
T T T _
/ (VL(U),V)dt +/ (P, V)dt +/ (U -U,V)dt >0 YV € Upa- (3.6)
0 0 o

Proof. From Lemma 3.3 and Gateaux differentiable of L., we see that J, is Gateaux
differentiable. It is well-known that

JLUNV =U,) 20, VV € Upd.
In a direct calculation, we have
. T T T _
[ @0¥~Yazom+ [ (Lo i+ [ -7z
0 0 0

T
> / (U-U,V)dt VV €Uaa, (3.7)
0

where Z, is the solution to

(Z.) + AZ, - F'(Ye)Ze = V(1) 0<t<T,
Z.(0)=0.

Let P. be a solution of the equation (3.5). From Chap. XVIII, Theorem 2 of Ref.
4, we know that there exists a unique solution P, € L%(0,5;V) nC([0, T H) N
HY0,T; V') of (3.5). If we multiply (3.5) by Z, and integrate on (0,T), we have

T
[ oY - Yar v,V zoa
0
T
=/ (Pe, (Ze) + AZe - F'(Ye)Z)dt
0
T
= / (P, V)dt.
0
Hence, we get, by (3.7),

T T T
/(VLC(UE),V)dt+/ (PE,V)dt+/ (U.-T,V)dt>0 VVelpa O
0 0 0

Now we want to make ¢ tend to 0. We need further estimates on Pe.
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Lemma 3.5. Whene — 0,
P. = P weakly in L*(0,T; V)N H(0,T; V'),
P. — P strongly in L%(0,T; H).

Here, P is the solution of the linear problem

{-P’+AP-F’(7)‘P=D?—Y,,, 0<t<T, 38)

P(T) =0

in V.
Proof. By the standard argument, we infer that P, is bounded in L2(0,T;V) N
H'(0,T;V"). Therefore, we can obtain that

P, — P* weakly in L%(0,T; V)N H'(0,T; V"),
P. — P* strongly in L*(0,T;H).

Let us verify that P* is the solution of (3.8). In fact, it suffice to show that
[F'(Y.)]'P. = [F'(Y)]"P*  weakly in L2(0,T;V"). (3.9)
(f.iii) implies that, for each Z € C([0,T}; V),

T
/0 (F'(V)) P, - [F'(T)) P*, Z)dt
T T
< [ nllp. - PliZIde + C, | Ul + Dun1veDIP. - P12l
0 0
T .
+ /0 NF/ (Yo' P* = [F (D)) P* I | Z0dt = L, + Ing + I,

Since P, — P* strongly in L?(0,T; ™M), we have

Moreover, since Y, — Y strongly in M a.e. t, it follows from (f.iv) that
[F'(Ye)]*P* — [F'(Y)]* P* strongly in V' a.e..
By the dominated convergence theorem,
lim I, = 0.
For I,
lim e < CllZ|| L20,m0)-

Since 77 > 0 is arbitrary, this shows that (3.9) is satisfied. Hence, by the uniqueness,
weinfer P=P*. O

With the aid of the previous Lemmas, we can easily show the necessary conditions
of optimality.
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Theorem 3.6. Let U be an optimal control of (P) and let Y € L*(0,T;V) N
([0, T); H)NH'(0,T; V') be the optimal state. Then, there ezists a unique solution
P e L(0,T;V)NC([0,T); H) N H'(0,T; V") to the linear problem

P +AP-F(Y)P=DY -Y4, 0<t<T,
(3.10)

P(T)=0

in V. Moreover, _
—P(t) e L(U) ae. te(0,T).

Here, &L denotes the subdifferential of L.

Proof. Letting € — 0 in (3.5), it follows by Lemma 3.5 that there exists a unique
solution P € L*(0, T; V)NC((0, T); H)NH'(0,T; V') of (3.10). By Lemma 3.2, since
U, — U in L?(0,T;H), it follows from a standard argument (Ref. 2) that

T T
/ (VL(U.),V)dt — / (¢,V)dt with £(t) € OL(U) ae. t€ (0,T) (3.11)
0 0
for all V € U, 4. Letting € — 0 in (3.6), it follows from Lemma 3.5 and (3.11) that

T T
/(P,V)dt+/ (6, V)t >0 VYV €lUpg. O
0 0
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