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Halo Effect in the Coulomb-Modified Eikonal Model Analysis for
1Li+p Elastic Scattering

Yong Joo Kim
Department of Physics, Cheju National University, Jeju 690-756

The elastic scattering of ' Li+p at Ejau/A =62 MeV/nucleon has been analyzed within the frame-
work of Coulomb-modified eikonal model based on hyperbolic trajectory. It is assumed that ''Li has
a halo structure of a °Li core plus two weakly bound neutrons and is treated that the total nuclear
optical potential as a sum of core and halo neutron contributions. The theoretical calculation for
the elastic scattering cross section of 'Li+p at Ej.,/A = 62 MeV/nucleon provide a reasonable
agreements with the experimental data. We have found that break-up effect of halo neutrons is
important to understand the elastic cross sections of **Li + p system at Ej,»/A = 62 MeV /nucleon.

I. INTROCUCTION

The invention and development of the ra-
dioactive ion beamn has made possible to
search for experimental evidences of neutron
halos. The studies of elastic scattering of neu-
tron rich nuclei have attracted much interest
of nuclear physicists in the past two decades.
The halo structure of the nuclei with large
neutron-to-proton ratio has been studied [1-
10] extensively. The structure and reactions
of 'Li nucleus has attracted much experi-
mental and theoretical interest as a typical
case. It has been found that light neutron-
rich nuclei, such as ''Li, have a neutron halo,
which is a spatially prolonged distribution
of valence neutrons, extending far beyond a
well-defined core nucleus.

Proton elastic scattering cross sections
of °Li and 'Li at E),;,/A=60 and 62
MeV /nucleon, respectively, have been mea-
sured and analyzed using the phenomenolog-
ical optical model [3]. The elastic scattering
of weakly bound projectiles such as deuteron
and ''Li nucleus are examined [4] including
the break-up process to the continuum ex-
cited states. Hirenzaki et al. [5] have stud-
ied the proton elastic scattering of °Li and
Y11 using the Born approximation and the
optical potential approach. For the proton-
9111 j elastic scattering, the importance of the
central and spin-orbit terms of the optical
potential, and of the core and halo nucleon
contributions was clarified based on the sin-
gle scattering approximation to the Kerman-
McManus-Thaler multiple scattering expan-
sion (8]. The proton elastic scattering of ' Li

has been analyzed within the framework of an
extended Glauber model to take into account
the neutron halo effect [11].

Over the last decades, eikonal approxima-
tion has been established as a useful tool
for the study of heavy-ion elastic scattering.
The phase shifts in the eikonal approxima-
tion are derived from the integral equation
by further approximation the WKB results
[12]. A number of studies [13-16] have been
made to describe elastic scattering processes
between heavy ions within the framework of
the eikonal approximation methods. Cha and
Kim [17] have presented the first- and second-
order corrections to the zero-order eikonal
phase shifts for heavy-ion elastic scatterings
based on Coulomb trajectories of colliding nu-
clei and it has been applied satisfactorily to
the %0 + %0Ca and %0 + 90Zr systems at
Elab=1503 MeV.

The Glauber model approach based on
hyperbolic trajectory for the description of
the heavy-ion reaction cross section has been
presented to extend to lower energies [18].
In this Glauber model, trajectory modifi-
cations due to the nuclear potential apart
from the Coulomb potential has been sug-
gested by Gupta and Shukla [19] . The
Coulomb-modified eikonal model formalism
based on hyperbolic trajectory for the de-
scription of heavy-ion elastic scattering was
described and it has been applied satisfacto-
rily to elastic scatterings of 12C + '2C system
at E,,=240, 360 and 1016 MeV [20].

In our previous paper [21], we have
analvzed the elastic scatterings of %Li+p
and ''Li+p systems at E),,/A=60 and 62
MeV/nucleon, respectively. by using the
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Coulomb-modified eikonal model based on
Coulomb trajectory. In this paper, we present
the Coulomb-modified eikonal model based
on hyperbolic trajectory to take into account
the halo effect and apply it to the ! Li+p sys-
tems at Ej,,/A = 62 MeV/nucleon. Assum-
ing that the !'Li nucleus has a halo struc-
ture of two weakly bound neutrons around
the °Li core nucleus, we take the optical po-
tential of °Li as the core potential for ''Li
and add a halo potential arising from the two
weakly bound neutrons. In section II, we
present the theory related with the Coulomb-
modified eikonal model based on hyperbolic
trajectory. Section III contains results and
discussions. Finally, concluding remarks are
presented in section 4.

II. THEORY

If there is a single turning point in the ra-
dial Schrédinger equation, a first-order WKB
expression for the nuclear elastic phase shifts
6L, taking into account the deflection effect
due to Coulomb field, can be written as [14,
15]

o, =‘/:okL(r) dr — /ookc(r) dr, (1)

Te
where r, and 7. are the turning points cor-

responding to the local wave numbers kr(r)
and k.(r) given by

kp(r) = k[l— (%’rl + (Lk-:j)Q . Up;j(r))] 1/2‘
(2)
ke(r) = k[l - (% + _(_L_k%i)]lﬂ’ )

where k = /2uE /R, 1 is the Sommerfeld pa-
rameter, and Uy (r) the nuclear potential. If

snk
[ffm%t:ﬁ”% “)] Un(r)

we consider the nuclear potential as a pertur-
bation, the nuclear phase shift can be written
as

_p % rUn(r)
‘5(Tc)—‘m 5 \/rz——_Tr_gdr' (4)

where r. is the distance of closest approach
given by

re=g{os a6

and 7 is given in the cylindrical coordinate
system as

r? =y2+22.

(6)

In the heavy-ion scattering, the orbit de-
scribing a projectile may be considered as one
branch of a hyperbola. The hyperbolic trajec-
tory with respect to the center of the poten-
tial in case of the Coulomb potential is given
by [19]

k2 (y _ 8)2 k222
m? T Iz

=1, (7)

where
s=(n* + L)k (8)

By arranging Eq. (7), the following expres-
sion is obtained

2smy [ k2 n?
2 _ 2 2_1) 4 252
¥y =rerm g ( 1+ 2? 1) 2R ©)

From Egs. (4), (6) and (9), the nuclear phase
shift 61 (r.) can further be expressed as

2

bu(re) =~ [
Rk /0 (2 (VTFRETIE - 1) + 2/ L2 + 1);2]1/

5 2dz. (10)

- 10 -



Halo Effect in the Coulomb-Modified Eikonal Model Anaiysis for ~ Li

+p Elastic Scattering

In the "Li+p elastic scattering, the halo
nucleus(!!Li) is treated as a (core nucleus) +
(halo neutrons) system interacting with the
proton through (core nucleus) - and (halo
neutrons)- proton interactions. Then, the op-
tical potential can be given as a sum of core
nucleus and two halo neutrons contributions,

where U.(r) and U (r) are the optical poten-
tial for (core nucleus + p) and (halo neutrons
+ p), respectively. So, the nuclear phase shift
d(rc) including the effect of the halo neutrons
break-up can further be written as

Un(r) = Uc(r) + Un(r), (11)
|
&(re) = bc(re) +6n(re)
sk 1 2 ]
u [ _ﬁm‘*(%'ﬂ) Ue(r) ;
= Tz, 172 24%
Rk Jo [L,j’l(\/mﬁ-l)ﬂz/mﬂ) 2]
-s k 1 2 ,
po = 'ﬁ‘ﬁﬁ +(F + I)J Un(r) | 2
—— 1/22 Z.
Mo [ (THREATIE - 1) + (/12 + 1)27)
[
By taking U.(r) and U(r) as the optical  phase shift 6, as
Woods-Saxon f i b )
n forms given by SN = e (16)

U(r) = % ' s
C(T) = - 1 + e(r—Ru)/av - 1 + e(r—RW)/a'w ’
(13)
and
Vs W
Uh(r) - _1 + e(r—~Rhk)/ah - 1 +elr— ~RL)/al’
(14)

we can use the phase shift in the general ex-
pression for the elastic scattering amplitude.
Ignoring spin-orbit effects, the elastic scatter-
ing cross sections are then obtained from the
scattering amplitude

1(0) = In(6 lkz
i=0
x Pr(cos$),

Seoe(sy ~1)
(15)

where fr(@) is the usual Rutherford scatter-
ing amplitude and o; the Coulomb phase
shift. The nuclear S-matrix elements S’Lv in
this equation can be expressed by the nuclear

III. RESULTS AND DISCUSSIONS

As in the proceeding section, we have
calculated the elastic differential cross sec-
tion for !'Li+p systems at Ej,,/A= 62
MeV /nucleon by using the Coulomb-modified
eikonal model based on hyperbolic trajec-
tory. Table I show the least square fit-
ted parameters of Woods-Saxon potential for
9Li+p and 'Li+p systems at E\,,/A=60 and
62 MeV/nucleon in the Coulomb-modified
eikonal model based on hyperbolic trajectory.
In order to take into account the halo effect
of 11Li nucleus, we assume that !'Li has a
halo structure of two weakly bound neutrons
around °Li core. Then, the total optical po-
tential of ! Li+p system can be treated as a
sum of the core potential and two neutrons
lalo one. Since the core potential of !'Li + p
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system is considered approximately the same
as the one of 9Li + p system, we have chosen
the core potential obtained from fitting the
9Li + p elastic scattering data at Ejap/A=
60 MeV /nucleon given in table I. After fixing
the core potential, the halo potential parame-
ters are adjusted so as to minimize the x*/N

given by

. . 2
1 ol . — o
2/IN = — Zexp  “cal | 17
x*/ NZ[ AT (7

=1

J

TABLE I: Parameters of the fitted Woods-Saxon potential in the Coulomb-modified eikonal model
based on hyperbolic trajectory for ®Li+p and !'Li+p systems at Ei,/A=60 and 62 MeV /nucleon,
respectively.

System V, (MeV) R, (fm) a, (fm) W, (MeV) R, (fm) ay (fm) x}/N
Li+p 35.0 2.27 0.62 25.2 2.16 0.52 0.87
ULitp 33.8 2.42 0.68 21.8 2.31 0.80 1.84

TABLE II: The halo part of optical potential parameters in the Coulomb-modified eikonal model based
on hyperbolic trajectory for !!Li+p elastic scattering at Ei.p/A= 62 MeV /nucleon. The core part of

optical potential is taken from ®Li+p system at Ej.p/A=60 MeV/nucleon given in table L.

Vo' (MeV) R} (fm) ay (fm) W2 (MeV) Ry, (fm) ay, (fm) x*/N
28.8 0.83 0.49 15.3 1.40 1.27 1.11
[
In Eq.(17), 0},, ( 0i,) and A}, are the  given in Table I, while the solid curve in Fig.

experimental {calculated) cross sections and
uncertainties, respectively, and N is the num-
ber of data used in the fitting. The fit-
ted halo Woods-Saxon potential parameters
are given in table II. The calculated results
for elastic angular distributions of the °Li+p
and 'Li4+p systems at FEl.,/A=60 and 62
MeV /nucleon, respectively, are presented in
Fig. 1 together with the observed data [3].
The dashed curves in Figs. 1(a) and 1(b) are
the calculated cross sections obtained from
the common eikonal model based on hyper-
bolic trajectory by using the optical potential

More realistic insight into the phenom-
ena of angular distributions for the Li+p
and 'Li+p systems at Ej,,/A= 60 and 62
MeV /unucleon, respectively, can be provided

1(b) is the calculated result including the halo
potential given in Table II. As shown in Fig.1,
the experimental data are reasonably repro-
duced in both cases. In particular, eikonal
model based on hyperbolic trajectory includ-
ing the halo effect can provide an overall good
description of elastic cross section of 1Li+p
systems at Fl,,/A = 62 MeV/nucleon, com-
pared with one without halo one. It can see in
table I and II that value of x2/N for 'Li+p
system at Ej,,/A = 62 MeV /nucleon decrease
in the calculated result including the halo,
compared to the value without halo one.

by the representation of the elastic scattering
amplitude in terms of the near- and far-side
components. The near- and far-side decom-
positions of the scattering amplitude in the
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FIG. 1: Elastic scattering angular distributions for 9Li+p and !'Li+p systems at Ej.»/A=60 and 62
MeV /nucleon, respectively. The solid circles represent the observed data taken from Ref. {3]. The
dashed curves are the calculated results obtained from the common Coulomb-modified eikonal model
based on hyperbolic trajectory, while the solid curve is the calculated one including the halo effect.

Coulomb-modified eikonal model based on
hyperbolic trajectory were performed by the
Fuller’s formalism [22]. The contributions of
the near- and far-side components to the elas-
tic cross sections with the Coulomb-modified
eikonal model based on hyperbolic trajectory
for °Li+p and !Li+p systems, respectively,
are shown in figures 2(a) and 2(b) along with
the total differential cross section. The figure
2(a) are the results obtained from the com-
mon Coulomb-modified eikonal model, while
figure 2(b) are the calculated ones using the
eikonal model including the break-up effect.
The total differential cross section is not just
a sum of the near- and far-side components
but contains very small interference between
the two amplitudes as seen in figures. 2(a)
and 2(b). In both cases, the near-side am-
plitudes corresponding to the positive-angle
trajectories are very small compared with the
far-side one over the whole angle. So, the
elastic scattering patterns of these systems

are dominated by the refraction of the far-
side trajectories. The angular distributions
for °Li+p and '!Li+p systems at Ejp/A =
60 and 62 MeV/nucleon, respectively, show
very weak oscillations due to the smallness of
the near components.

To investigate the neutron halo effect in
111i+p system at Eja,/A4 = 62 MeV/nucleon,
we plotted the real and imaginary parts of the
core and halo contributions to the optical po-
tentials, along with the total ones in figure 3.
As is expected, the halo potentials are small
compared to core potential. The halo contri-
bution to the real potential is negligibly. But
we can in Fig. 3(b) see the larger value of
the imaginary part of the core potential com-
pared with the halo one in the interior region.
Since most of the contribution to the differ-
ential cross section comes from the surface
region of the colliding nuclei, the discrepancy
between those imaginary parts in the interior
region can be neglected. However, imaginary
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halo potential give a significant contribution
in the outer regions of the potential. This fact
indicates that the elastic scattering of ! Li+p
system can be described as a sum of core po-
tential and imaginary halo one. This results

are consistent with one of Hirenzaki et al. (5]
which the halo potential due to two weakly
bound neutrons is assumed to have only an
imaginary part within the Born approxima-
tion.
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FIG. 2: Differential cross sections (solid curves), near-side contributions (dotted curves), and far-side
contributions (dashed curves) following the Fuller's formalism [22] from the the Coulomb-modified
eikonal model based on hyperbolic trajectory. The Fig. 2(a) are the calculated results obtained from
the common Coulomb-modified eikonal model, while the Fig. 2(b) is the calculated one using the
Coulomb-modified eikonal model including the halo effect.

IV. CONCLUDING REMARKS

In this paper, we have presented the
Coulomb-modified eikonal model based on
hyperbolic trajectory taking into account the
halo effect. It has been applied to the elastic
scattering of M'Li+p system at Ej,p/A4 = 62
MeV /nucleon. By treating !'Li as halo struc-
ture, the nuclear optical potential is assumed
as a sum of core and two halo neutrons, in-
dicating that phase shift can be given as a

sum of core nucleus and two halo neutrons
contributions. The elastic cross sections for
Li+p system at Eja,/A=62 MeV /nucleon
are calculated with the core potential fitted
to the °Li + p scattering data at E},,/A=60
MeV /nucleon plus the halo potential. The
differential scattering cross sections obtained
from the calculation including the halo ef-
fect improve the agreements with the exper-
imental data for 'Li+p system at Ej.,/A
= 62 MeV/nucleon, compared to the calcu-
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FIG. 3: (a) Real and (b) imaginary parts of optical potential obtained from the Coulomb-modified
eikonal model based on hyperbolic trajectory. The solid, dashed and dotted curves correspond to the
total, core and halo optical potentials, respectively, for the ' Li+p system at Ei.p/A=62 MeV /nucleon.

lated result without halo one. A Fuller’s de-
composition of the elastic cross section into
near- and far-side components for the Li+p
and "'Li+p systems at Ej,,/A=60 and 62
MeV /nucleon, respectively, showed that the
elastic cross sections are both dominated by
the far-side amplitude, indicating very weak
oscillation structures of the angular distribu-
tions. The real part of halo potential is neg-
ligibly small meaning that the elastic cross
sections are not sensitive to the real halo po-
tential. However, the imaginary part of halo

potential is significant in the outer regions of
imaginary potential.

In conclusion, good agreement of !!Li+p
system between the observed data and the-
oretical result means that the halo neutrons
have a large probability to be found outside
the interaction range. The two halo neutrons
are very weakly bound to the core and are
thrown away by collisions. The break-up ef-
fect is important to understand the elastic
cross section of !'Li+p system at Ej,,/A=
62 MeV /nucleon.
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