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1. Introduction

In homotopy theory, in particular in the problem of fibration, the notion
of exponential law plays central role. So many researchers have been tried to
obtain convenient categories in which the exponential law exists {2-8,16,17].
So far, compactly generated spaces and quasi-topological spaces have been
main objectives for the study from this point of view. However, in a struc-
tural point of view it has not been completely successful to find a convenient
category of fibred spaces. The main reason was that the category of com-
pactly generated spaces is not a quasitopos and quasi-topological spaces do
not form a category, but a quasi-category. In 1986, J. Adamek and H. Her-
rlich showed that a topological category C is a quasitopos if and only if for
any B €C, Cp is cartesian closed. Thus, it is natural to consider the cate-
gory which is a quasitopos. With this consideration, in 1992, Min and Lee
[13] obtained natural exponential laws in the category of convergence spaces

over a base B.
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In first-countable topological spaces, one can restrict oneself to sequence
in studying convergence and continuity. However, for more general spaces it
seems to be assumed that sequences are not enough and that more general
nets or filters must be used. But, it appears that in some senses sequences
are adequate for all spaces considered up to now in analysis. Also, the main
theorems of integration theory (dominated convergence. monotone conver-
gence, etc.) are true only for sequences. The sequential language is useful
as an alternative in metric spaces, and finally there is a fact that the con-
vergent sequence and its limit form a compact set, while this is not true
for nets. Thus there seems to be reason for direct study of sequential con-
vergence. With this consideration, sequential convergence spaces have been

studied from various points of view.

In this paper, we introduce sequential convergence spaces over a base
space and construct a function space structure which will allow us fibrewise

exponential laws.
2. Preliminaries

For any set X, let XN be the set of all sequences on X. A sequential
convergence space is an ordered pair (X, £) of sets, where £ C XN x X is a
specified relation between sequences u € XN and points p € X subject to the
following three axioms:

(1) If u, = z for all n, then ((u,),z) € €.
(2) If ((un), ) € &, then for every subsequence u,(,) of un, (us(n), ) € &.
(3) If u € XV is such that every subsequence u,(,) has a further subsequence

Ugt(n) With (tgyn), L) € €, then ((un),z) € €.

In what follows we will express the statement ((u,),«) € £ by writing u,

converges to z in (X, §).
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Let (X, €) and (Y, 7) be sequential convergence spaces and f: X — Y be
a map. Then f is called a sequentially continuvous map if f(u,,) converges to

f(z) in (Y, n) whenever u,, converges to x in (X, §).

The class of all sequential convergence spaces and sequentially continuous

maps forms a category, which will be denoted by Seq.

Proposition 2.1. [15] Seq has initial structures. The initial structure £
induced by a family of functions f; : X — Yi(: € I) and sequential conver-
gence structures n; on Y; consists of precisely those pairs (u,,r) such that

for every © € I the sequence fi(u,) converges to fi(x) in (Y,n;).

Proposition 2.2. [15] Seq has final structures. The final structure n in-
duced by an epimorphic family of functions f; : X; — Y (2 € I) and sequential
structures & on X; consists of precisely those pairs (vy,,y) such that for every
subsequence vy, there exists a further subsequence ezpressible in the form

Vst(n) = fi(un) for some choice of ¢ € I and u, € X; such that u, converges

to z 1n (X;,&) and fi(x) =y.

Let Y, Z be sequential convergence spaces and C(Y,Z) be the set of all
sequentially continuous maps from Y to Z. Then it is known that there is an
external structure on C(Y, Z) defined as follows: Give the final structure on
C(Y, Z) induced by the epimorphic family of functions ¢ : X — C(Y, Z) for
which the associated map gt : X xY — Z,g%(z,y) = g(z)(y) is a sequentially

continuous map. Then we have the following result.
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Theorem 2.3. [15] Seq upholds an ezponential law

C(X xY,2)= C(X,C(Y,2)).

3. Function space structures

In this chapter, we define an internal structure on C(Y, Z) and prove that
this definition 1s equivalent to the external structure on C(Y,Z). And, we
introduce the notion of the sequential convergence space over a base space
and define a function space structure which makes the category Seqp to be

cartesian closed.

For given sequential convergence spaces Y and Z, consider the following

internal structure on C(Y, Z).

Definition 3.1. The sequence f, converges to f in C(Y, Z) if for any sub-

sequence fy,) of f, and any sequence y, which converges to y in Y the

sequence fy(n)(y.) converges to f(y) in Z.
Then we have the following result.
Proposition 3.2. The above two definitions on C(X,Y) are equivalent.

Proof. Suppose f, converges to f in C(Y,Z) with respect to the internal

structure. Let fy,) be a subsequence of f, and y, be a sequence in ¥V
converging to y. Let E = {y,} U {y}. Define g : E — C(Y,Z) by ¢g(y,) =

fs(ny and ¢(y) = f. Then for any other sequence x, in Y converging to

z, the sequence ¢'(ya,2n) = g(ya)(#n) = f(5n)(xn) converges to f(z) =
g(y)(z) by the definition of the internal structure on C(Y,Z). Therefore
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gt is sequentially continuous, and hence f, converges to f in C(Y,Z) with
respect to the external structure.

Conversely, suppose f,, converges to f in C(Y,Z) with respect to the
external structure. Let fy,) be a subsequence of f, and y, converge to y
in Y. It remains to show that fy,)(y.) converges to f(y) in Z, and hence
it is enough to show that for any subsequence foy,)(¥i(n) Of fo(n)(yn), there
exists a further subsequence fyy(n)(¥iu(n)) Which converges to f(y). By
the definition of the external structure, there is a map ¢ : X — C(Y, 2)

and a sequence z, converging to = in X such that ¢g(z,) = fea),9(z) = f

and g¢' is sequentially continuous. But, since (Ziy(n),Ytu(n)) converges to

($, y)v the sequence gt(mtu(n),ytu(n)) = g(x(tu(n))(‘y(tu(n)) = fatu(n)(y(tu(n))
converges to g(x)(y) = f(y). Hence fy()(yn) converges to f(y) in Z, and so

fn converges to f in C(Y, Z) with respect to the internal structure.

Now, consider the sequential convergence space over a base space.

For a given space B in Seq, the category Seqp is defined as follows.
An object in Seqp is a pair (X, p) consisting of an object X of Seq and a
morphism p : X — B of Seq. If (X,p) and (Y, q) are objects in Seqp, a
morphism in Seqp is a morphism f : X — Y of Seq such that go f = p. In
this case, X is called a sequential convergence space over B, p is called the

projection and f is called a sequentially continuous map over B.

Proposition 3.3. Seqp has initial structures with respect to the family of
functions f; : X — (Yi,n:)(7 € I).
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Proposition 3.4. Seqp has final structures with repect to the epimorphic
family of functions f; : (X;.&) — Y(v € I).

For given sequentially convergence spaces X and Y over B, let

5(X,Y UC (X5, 13)

beB

as a set, where C(X,,Y}) is the set of all sequentially continuous maps from
Xy to Y. Define ((fn), f) € &, where £ C Ca(X,Y)N x Cp(X,Y) and
feC(Xs, V) if

(1) let z, converges to x in X with z € X, then for any subsequence fy(n) of

fn, the sequence

fsny(@n) i fony(z,) can be defined
f(z) if not

f,s(n)(d:l ) {

converges to f(z) in Y,
(2) the sequence p(f,) converges to p(f), where p : Cp(X,Y) — B is the
projection defined by p(g) = b for ¢ € C(Xs,Ys).

Proposition 3.5. (Cg(X,Y),£) 1s a sequential convergence space.

Proof. Let f, = f for all n, and f € C(X;,Y;). Then if z, converges to

r € X, for any subsequence fy,) of f,, the sequence

, Dy fsy(€n) if fon)(zn) can be defined
f 3(n)(m n) - .
f(z) if not

is the image of a mixed sequence of a subsequence of z, and a constant

sequence r under f. Hence fy,)(2,) converges to f(z) in Y. Trivially
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p(fn) = b is a constant sequence in B, and hence p(f, ) converges to p( f).
Therefore, ((fn), f) € €.

Let f, converges to f in Cg(X,Y) and f € C(X,,Y,). Let fo,) be
a subsequence of f,. We have to show that for any sequence x, which

converges to v € X, in X, and for any subsequence fyy,) of fon), the
sequence f',;,)(2'n) converges to f(x). But, since f, converges to f in
Cp(X,Y) and fyyn) is also a subsequence of f,, f',;,)(2's) converges to
f(z). And, since p(fs(n)) is a subsequence of p(f,), p(fsn)) converges to

p(f) Therefores ((fs(n))af) € 6
Let f, be a sequence in Cg(X,Y) such that any subsequence of f, con-

tains a further subsequence which converges to f € C(X,,Y;). We have to
show that for any sequence z, which converges to * € X, in X, and any
subsequence fy(n) of fn, f'yn)(2'n) converges to f(x) in Y. Since Y is a
sequential convergence space, it 1s enough to show that for each subsequence
f'stm)(2'4ny) of fon)(zn), there is a further subsequence f',;,(n)(2 tu(n)
which convergea to f(z). Note that fy(n) is a subsequence of f,, and hence
by assumption f(,) has a further subsequence fy4y(,) which converges to f.
By the definition of £ and the fact that x,(,) converges to z € X; in X, for
any subsequence fyipw(n) f fsto(n), the sequence f’sww(n)(z’ww(”)) converges
to f(z)in Y. But, f’atuw(n)(l'ltvw(n)) is also a subsequence of f',,,,)(2'¢(n)).
Hence f',, (z',) converges to f(r)in Y. Moreover, p(f,) converges to p( f).
since B is a sequential convergence space. Therefore, ((f,), f) € €.

In all, (Cg(X,Y),£) is a sequential convergence space.
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Proposition 3.6. The evaluation map ev : X xgCg(X.Y) — Y defined by

ev(x, f) = f(x) s sequentially continuous.

Proof. Let (a4, f,) be a sequence in X xp Cp(X,Y") such that (z,, f,,) con-
verges to (x, f), where »r € X and f € C(X},Y}). Then @, converges to x in
X and f, converges to fin Cp(X,Y). Since f, converges to f in Cg(X,Y"),

for any subsequence fy(,,) of f,, the sequence

fsm)(zn) i fon)(2n) can be defined

f’s(")(x’n) - { f(z) if not

converges to f(z)in Y. Since f, is also a subsequence of f,, °

folzn) if fo(z,) can be defined

f'"(?'”): { f(z) if not

converges to f(x) in Y. But, since f, and z, are contained in the same
fibre, this sequence is equal to ev(z,, f,). Hence ev(z,, f,) converges to

f(z) = ev(z, f) in Y. Therefore, ev is sequentially continuous.

Theorem 3.7. Seqp s cartesian closed.

Proof. Let f: X xpZ — Y be a given sequentially continuous map. Define
f:Z - Cg(X,Y) by f(2)(z) = f(z.z) for (2,2) € X xp Z. Let z,
converge to z € Z; in Z. Then we have to show that f(z,) converges to f(z)
in Cp(X,Y). Let z, converge to r € X; in X and f(z,(n)) be a subsequence
of f(z). Then we have to show that the sequence

I N _ T(Zs(n))(l'n) if 7(33(11))(1711) can be defined
f(z s(n))(iL n) = { ?(:)(;p) £ 1ot
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converges to F(=)x)in Y. Consider the sequence (&, Z4(n) ), Wwhere (', Zo(n))
= (Tpn, Z4(ny) if ¥, and z,(,) are contained in the same fibre and (&5, z5(n)) =
(z,z) if not, which converges to (x,z). Then, since f is sequentially con-

tinuous, f(@,.zs.)) converges to f(x,z). But this sequence is equal to
?(Z's(n))(;l"n). Moreover, p(f(z,)) converges to p(f(z)) in B. In all, flzn)

converges to f(z) in Cp(X,Y). Thercfore, f is sequentially continuous.
Corollary 3.8. For sequential convergence spaces X,Y and Z over B,
¢$:C(X xpY,Z)— Cp(X,C(Y,2Z))

i3 an isomorphism over B, where ¢(f)(z)(y) = f(z,y).

For sequential convergence spaces X and Y over B, let Mp(X,Y) the
space of sequentially continuous maps from X to Y over B, equipped with

the subspace structure of C{X,Y) in Seq.

Proposition 3.9. For sequential convergence spaces X and Y over B,
¢: Mp(X,Y)— Mp(B,Cp(X,Y))

i3 an isomorphism over B, where $(f)(b) = fo : Xy — Y3, the restriction of
f on X,.

Proof. Trivially, ¢ is bijective. Suppose that f, converges to f in Mp(X,Y),
b, converges to b in B and x, converges to x* € A} In X. We have to
show that for any subsequence @(fy(n)) of #(fn), &(fs(n))(bn) converges to
#(f)(b) in Cp(X,Y), and hence that for any subsequence ¢(fst(ny}be(n))>

&(farimy N ba(m)) (z1") converges to ¢(f)(b)(x) in Y. But, since f, converges to
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fin Mp(X,Y), for(m(2,) converges to f(«r). Note that ¢(fsf(,,))(bt(u)‘)l(;rn')
1s a mixed sequence of a subsequence fy,,,(x,) of fstimy(®n) and a con-
stant sequence (f(r)) and hence converges to f(r) = @(f)(b)(x). More-
over, (@ fs(n))by)) converges to »(#( f)(b)), since b, converges to b, where
r: Cg(X,Y) — B is the projection. Therefore, ¢ is continuous.

And, let ¢! = ¢ and f, converge to f in Mg(B, Cp(X,Y)). Suppose
Tn converges to r € X} and z, € X,,. Note that the projection p: X — B
is sequentially continuous, and hence b,, converges to b. Since f, converges
to f in Mp(B,Cp(X,Y)), Fstn)(be(n) (Ty(ny) converges to f(b)(z). But,
©(fs(n)(@n)) = fo(n)(bn)(z,). This means that @(fs(nyz,) contains a fur-
ther subsequence which converges to f(b)(x) and hence this sequence con-

verges to f(b)(z). Therefore, ¢ is continuous. In all, ¢ is an isomorphism.

Theorem 3.10. For sequential convergence spaces XY and Z over B,
¢:Mp(X xpY,Z)— Mp(X,Cp(Y,2Z))
1 an 1somorphism over B, where ¢(f)(x)(y) = f(z,y).

Proof. 1t is easy to see that ¢ is a bijection. Suppose that f, converges to f in
Mp(X xBY, Z), x, converges to z € X, and y,, converges to y € Y,. We have
to show that for any subsequence ¢( fy(,.)) of ¢( f.), & fsin))(n) converges to

#(f)(z), and hence that qﬁ(fst(n))(rct(n))'(yn') converges to ¢(f)(z)(y). But,
we note tha‘t QS(fst(n))(wt(n))l(y‘n’) 1s ¢(.fst(n.))(‘ml(n))(yn) lf :L't(n) a.nd Yn are

contained in the same fibre, and is ¢(f)()(y) if not. Consider the sequence
(Te(n)' s yn') In X XY if (24(ny’, yn') is (Te(nys Un) if &4y and y, are contained

in the same fibre, and is (z,y) if not. Then the sequence ¢(fs,(n)‘)(xt(n))'(yn')
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is equal to foyn)(*¢(ny’yn') which converges to f(a,y) = ¢(f)x)y). More-
over, (¢ fs(n))) converges to r(¢( f)), where » : Cp(Y,Z) — B is the pro-
jection. Hence ¢ is continuous.

Conversely, let ¢~! = ¢ and f, converge to f in Mp(X.Cg(Y, Z)).
Suppose (z,.y,) converges to (r,y) in X xp Y. Then o(fo)xn,yn) =
fr(xa)(yn), and hence o( f, )2y, yn) converges to f(a)(y) = ¢(f)(x,y). So,

@ is continuous. In all ¢ 1s an isomorphism.
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