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SPECTRAL MAPPING THEOREM
AND WEYL’'S THEOREM

YOUNGOH YANG AND JIN A LEE

ABSTRACT. In this paper we give some conditions under which the Weyl
spectrum of an operator satisfies the spectral mapping theorem for ana-
lytic functions. Also we show that Weyl’s theorem holds for p(T') where
T is an operator of M-power class (V) and p is a polynomial on a neigh-
borhood of ¢(T). Finally we answer an old question of Oberai.

0. Introduction

Throughout this paper let H denote an infinite dimensional Hilbert
space and B(H) the set of all bounded linear operators on H. I T €
B(H), we write o(T) for the spectrum of T, mo(T) for the set of eigen-
values of T, mo;(T) for the set of eigenvalues of finite multiplicity, and
moo(T) for the isolated points of o(T') that are eigenvalues of finite multi-
plicity. If K is a subset of C, we write iso K for the set of isolated points
of K. An operator T € B(H) is said to be Fredholm if its range ran T is
closed and both the null space ker T and ker T* are finite dimensional.
The indez of a Fredholm operator T, denoted by (T, is defined by

#(T) = dimker T — dimker T*.
The essential spectrum of T, denoted by o.(T), is defined by

0.(T) = {A € C: T — Al is not Fredholm}.
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A Fredholm operator of index zero is called a Weyl operator. The Weyl
spectrum of T, denoted by w(T), is defined by

w(T)={Ae€ C: T — A is not Weyl}.

It was shown ([1]) that for any operator T, a.(T) C w(T) C o(T), and
w(T) is a nonempty compact subset of C.

Recall ([7]) that an operator T € B(H) is said to be M —hyponormal
if there exists M > 0 such that

(1) (T — 2)*z|| < MI(T - 2)=||

for all z in H and for all z € C.

Every hyponormal operator is M —hyponormal, but the converse is
not true in general: for example, consider the weighted shift S on I;
given by '

5(1:113:2" ) = (0,2$1,$2,.’L‘3," : )'

If T is both Fredholm and M —hyponormal, then :(T) < 0. It was
known that the mapping T — w(T) is upper semi-continuous, but not
continuous at T([8]). However if T, — T with T,T =TT, foralln € N
then

(2) imw(T,) = w(T).

It was known that w(T) satisfies the one-way spectral mapping theorem
for analytic funcions: if f is analytic on a neighborhood of o(T') then

(3) w(f(T)) C f(w(T)).

The inclusion (3) may be proper(see [2, Example 3.3}). If T is normal
then ¢.(T) and w(T) coincide. Thus if T is normal and f is analytic on
a neighborhood of o(T), it follows that w(f(T)) = f(w(T)) since f(T)
is also normal.

In this paper, we give some conditions under which the Weyl spectrum
of an operator satisfies the spectral mapping theorem for analytic func-
tions. Also we show that Weyl's theorem holds for p(T) where T is an
operator of M-power class (N) and p is a polynomial on a neighborhood
of o(T). Finally we answer an old question of Oberai.
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1. Spectral mapping theorem and Weyl’s theorem

We recall ([2]) that for any operator T € B(H),
(4) o(T) —w(T) C moy(T) or equivaently o(T) — mof(T) C w(T).

THEOREM 1. If either mo¢(T) = ¢ or mo5(T*) = ¢, then w(f(T)) =
f(w(T)) for every analytic function f on a neighborhood of o(T).

PROOF. Suppose 7,¢(T) = ¢. Since m,¢(p(S)) C p(7o5(S)) for every
operator S and any polynomial p(t), 7,7(T) = ¢ implies 7,#(p(T)) = ¢.
Therefore w(T) = o(T) and w(p(T)) = o(p(T)) by (4). Since o(p(T)) =
p(o(T)) by the usual polynomial spectral mapping formula,

w(p(T)) = o(p(T)) = p(o(T)) = p(w(T)).

Similarly if 7, ¢(T*) = ¢, then w(p(T)) = p(w(T)) since w(T*) = w(T)*.

If f is analytic on a neighborhood of o(T), then by Runge’s theo-
rem([4]), there is a sequence (p,(%)) of polynomials converging uniformly
in a neighborhood of ¢(T) to f(t) so that p,(T) — f(T). Since each
Pn(T) commutes with f(T), by [8],

f(w(T)) = lim pn(w(T)) = limw(pa(T)) = w(f(T))-

THEOREM 2. If S and T are 'commuting M —hyponormal operators,
then

(5) S, T Weyl <= ST Weyl

PROOF. If S, T are Weyl, then S,T are Fredholm and (S) = (T)
0. By [4], ST is Fredholm and by the index product theorem, i(ST)
i(S) + ¢(T) = 0. Hence ST is Weyl.

For the backward implication of (5) we note that if ST = TS, then
ker SUker T C ker ST and ker S* Uker T* C ker(ST)*. If ST is Weyl,
then dimker S,dimker T < oo and dimker S*,dimker T* < co. Also ran
S and ran T are closed by [6, Theorem 3.2.2]. Hence S, T are Fredholm.
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Since S and T are M —hyponormal, :(S) = #(T) = 0 since 0 = #(5T) =
i(S) +(T).

If the “M —hyponormal” condition is dropped in the above Theorem,
then the backward implication may fail even though T} and T; commute:
For example, if U is the unilateral shift on [;, consider the following
operatorson lp @l : Ty =U@Tand T, =10 U™,

Also we note that Theorem 2 holds for any hyponormal operator T
since every hyponormal operator is M —hyponormal.

THEOREM 3. If T is M —hyponormal and f is analytic on a neigh-
borhood of o(T), then w(f(T)) = f(w(T)).

PROOF. Suppose that p(t) is any polynomial. Let
P(T) =AM = ao(T — p1I) - - (T = pal).

Since T is M —hyponormal, T — u;I are commuting M —hyponormal
operators for each ¢ = 1,2,--- ,n. It thus follows from Theorem 2 that

A ¢ w(p(T)) <= p(T) — Al = Weyl
> ag(T — p1l)-- - (T — pal) = Weyl
& T — p; ] = Weyl foreach:=1,2,--- ,n
> p; ¢ w(T)foreach1=1,2,---,n
<> A ¢ p(w(T))

which says that w(p(T)) = p(w(T)).

If f is analytic on a neighborhood of ¢(T), then by Runge’s theo-
rem([4]), there is a sequence (p4(t)) of polynomials converging uniformly
in a neighborhood of o(T) to f(t) so that pa(T) — f(T). Since each
pn(T) commutes with f(T'), by (8]

f(w(T)) = limpa(w(T})) = limw(pa(T)) = w(f(T)).
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COROLLARY 4. If T is hyponormal and f is analytic on a neighbor-
hood of o(T), then w(f(T)) = f(w(T)).

We say that Weyl’s theorem holds for T if
w(T) = o(T) — moo(T).

There are several classes of operators including normal and hyponormal
operators on a Hilbert space for which Weyl’s theorem holds. Also it
was shown in [8] that. Weyl’s theorem holds for any spectral operator of
finite type on a Banach space. Oberai has raised the following question:
Does there exist a hyponormal operator T such that Weyl’s theorem
does not hold for T?? Note that T? may not be hyponormal even if T is
hyponormal([5, Problem 209]). We will show that Weyl’s theorem holds
for p(T) when T is an operator of M-power class (N ). Thus we answer
an old question of Oberai since every hyponormal operator is of 1-power
class (N).
Recall ([9]) that T € B(H) is said to be isoloid if iso o(T') C wo(T).

LEMMA 5. ([9]) Let T € B(H) be isoloid. Then for any polynomial
p(t), P(o(T) = 70o(T)) = a(p(T)) = oo(p(T))-

Let T be an M —hyponormal operator which satisfies the additional
property that for all z in the complex plane, all integers n and all z in
H,

(T = 2)"z||* < M(T ~ 2)*"z| - |||
T is said to be an operator of M—power class (N)([7]). The following

M — hyponormal operator T which is not hyponormal is of M —power
class (N) : Let {e;} be an orthonormal basis for H, and define

Te; = 2e3, if 1=2
ei+1, if >3

i.e., T is a weighted shift. From the definition of T we see that T is

similar to the unilateral shift U([5], Problem 90). Thus there exists an

operator S such that T = SUS~'. In our case ||S|| = 2, ||S7}|| = 1.
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Since U is the unilateral shift, U is a hyponormal operator, and thus for
every n and z € C the operator (U — 2)" is of class (N). It follows that

(U = 2)"z||* < (U - 2)*"z]|

for all z € H with ||z]| = 1, and hence T is of M —power class with
M = 4. Thus our class is strictly larger than the class of hyponormal
operators.

THEOREM 6. If T € B(H) is an operator of M —power class (N),
then for any polynomial p(t) Weyl’s theorem holds for p(T).

PROOF. By (7], T is isoloid and Wey!’s theorem holds for any operator
of M—power class (N). Hence by Theorem 3 and Lemma 4,

w(p(T)) = p(w(T)) = p(o(T) = mo(T)) = o(p(T)) = moo(p(T))

Therefore Weyl’s theorem holds for p(T).

Since every hyponormal operator is of 1-power class (V), we obtain
the following result which is answer for an old question of Oberai.

COROLLARY 7. IfT € B(H) is hyponormal, then for any polynomial
p(t) Weyl’s theorem holds for p(T).

References

1. S. K. Berberian, An extension of Weyl's theorem to a class of not necessary
normal operators, Michigan Math. J. 16 (1969), 273-279.

, The Weyl’s spectrum of an operator, Indiana Univ. Math. J. 20 (1970),
529-544.

3. L. A. Coburn, Weyl’s theorem for nonnormal operators, Michigan Math. J. 13
(1966), 285-288.

4. J. B. Conway, Subnormal operators, Pitman, Boston, 1981.

5. P. R. Halmos, Hilbert space problem book, Springer-Verlag, New York, 1984.

6. R. E. Harte, Invertibility and singularity for bounded linear operators, Marcel
Dekker, New York, 1988.

7. V. 1. Istratescu, Some results on M —hyponormal operators, Mathematics Semi-
nar Notes 6 (1978).

8. K. K. Oberai, On the Weyl spectrum, lllinois J. Math. 18 (1974), 208-212.

, On the Weyl spectrum I, lllinois J. Math. 21 (1977), 84-90.

10. J. G. Stampfli, Hyponormal operators, Pacific J. Math. 12 (1962), 1453-1458.

_168_

2.




Spectral Mapping Theorem and Weyl's Theorem

11. B. 1. Wadhwa, M-hyponormal operators, Duke Math. J. 41 (1974), 655-660.

Department of Mathematics
Cheju National University
Cheju 690-756, Korea

_169_



	O. Introduction
	1. Spectral mapping theorem and Weyl's theorem
	References



