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The mesonic mass spectra of u#, 83, ¢Z, and bb systems in the 1994 Particle Data are analyzed
relativistically using a linear plus Coulomb potential model. The effective quark masses and the
corresponding strong coupling constants are determined by the least-squares method and the calcu-
lated and the observed masses of the systems are compared. It has been found that either f(1419)
or f1(1512) can not be assigned to the g7 state for low-mass isosinglet assignments. The calculated
values of the effective quark masses are 1.54, 1.77, 1.88, and 5.223 GeV, and the strong coupling
constants are 0.850, 0.493, 0.474, and 0.332 for the uii ,s§ ,c¢ , and bb respectively.

I. INTRODUCTION

The definition of meson was a particle of mass inter-
mediate between those of the electron and the proton
mediating forces in the nuclei, but it is now changed to
a strongly interacting particle with an integer spin. Be-
cause of the new definition, the number of mesons has
increased steadily, and its mass range has been extended
up to more than 100 GeV. Since there are several kinds
of strongly interacting particles with integer spin, we
need to classify them into appropriate categories, if pos-
sible. Traditionally the quark-antiquark bound states are
quarkonium states, and, of course, these states form the
main body of the meson family. Other possibilities com-
posed of quark components are the multi-quark states
such as ¢%4%, ¢%, ¢33, and so on. When we include
the gluonic components, it is possible to consider hybrid
states, such as ¢dg, ¢dgg, and glueballs composed of two
and three gluons gg, g9g. In order to analyze the spectra
of these observed mesons, we have to assign each observed
state to an appropriate state which can be made available
through theoretical considerations.

Theoretically. explicit calculations have been made
possible since the applications of potential models to the
non-relativistic ¢ systems. The bb systems have given
more firm ground to check the potential models, and it
has been found that the spin dependences become more
important for the lighter meson systems. Since so many
radial and orbital excitations of quarkonium states ex-
ist, almost all the observed mesons can be accounted for
by assigning suitable qg states with corresponding quan-

tum numbers, except for several states such as glueballs
and the exotic states. Hence we will concentrate on the
analysis of quarkonium states.

So many isosinglet meson states exist in the 1994 Parti-
cle Data [1] that simple counting can lead to the conclu-
sion that states exist which can not be assigned to bound
states of a quark and an antiquark. All of these quarko-
nium states and exotic states can not be analyzed simul-
taneously to determine the unknown parameters because
too many possibilities exist. Instead, we can choose the
quarkonium model to find the values of the parameters
by the least-squares method.

In this paper, we will consider 480 different assign-
ments for low-mass isosinglet mesons and compare differ-
ent assignments to determine exotic states which cannot
be assigned to any quarkonium states. Then, we calcu-
late the best fitted parameter values for the uii, 5§, c¢,
and bk systems by using the least-squares method. The
effective quark masses, the strong coupling constants,
and the potential parameters can be determined explic-
itly in this procedure, and it is possible to compare di-
rectly the results of assigning radially and orbitally ex-
cited states with appropriate quantum numbers to the
observed states.

In Section II, we give a brief description of our for-
malism, and assignments in the quarkonium model are
given in Section III. Parameter fit procedures by the
least-squares method are shown in Section IV, and the
calculated results are presented in Section V. The final
section is devoted to discussion.
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II. FORMALISMS

When the quark model was proposed [2], only a small
number of mesons and baryons were known. Hence,
the main problem was to find the compositions of each
hadron; radial excitations were not been considered
because of the lack of information about the quark-
confining potential. Although non-relativistic approxi-
mations had been made for various calculations, poten-
tial models were not used until the heavy charm quark
system J/¢ was observed [3]. For the ¢ and b quarko-
nium systems, the non-relativistic Schrodinger equation
was tried, and various potential models were introduced
[4) to predict the energy differences between radially and
orbitally excited states. After the first successful estima-
tion of the energy level differences, spin splittings were
found to be very important for the quarkonium systems,
and several groups have calculated the spin dependences
of strongly interacting quarkonium systems.

For heavy quark systems such as ¢ and bb, the spin-
dependent potentials can be safely obtained by calculat-
ing the relativistic propagator corrections expanded in
the strong coupling constant a, and inverse quark mass
L for a suitably chosen Wilson loop. The first-order re-
sults are [5)

4 1
Vsp = pepp—_ (s1+82)- Lsanm
1/s §2 l1de(r) 8 1
*5(57“ 32) L( rdr 3N
+ (38y -85 -F—s ~s)‘laL
3mym, 1t 1°%3)3 '(r+r,)3
2 4 1 -=z%
+ms1 '8250,47;—3‘6 o (1)
where s; are the spins and L = L; = —~Lj3. Since we can-

not calculate the form of the spin-independent potential
¢(r) from first principles, we have to assume the form of
¢«(r) [6).

As is well-known, various potential models exist with
one or two parameters which can be adjusted to fit the
observed spectra, and because these potential models
have quite similar features for the radial and the orbital
excitations of energy levels, we will take explicitly the
linear plus Coulomb potential {7}

r 4 1

dr)= 3 = geus +b 2

with two parameters a and b. The parameter b will be
fixed by the observed mass of 135, states in order to re-
duce the uncertainties of the annihilation contribution to
the lowest-lying 1! S, states. The choice of a linear plus
Coulomb potential is motivated by the QCD asymptotic
behaviors [8]. For short distances, the running coupling
constant becomes so small that one gluon exchange is
expected to be a good approximation, and the Coulomb

potential resuits from this approximation. For large sepa-
ration between the quark and the antiquark, the interme-
diate gluon fields are thought to form a linear tube so that
the potential increases linearly with distance. It is well
known that various phenomenological potential models
appropriately accommodate these two features. After the
successful applications of the spin-dependent potential
models to heavy quarkonium systems, several attempts
were made to extend the formalisms to the light quark
systems made of up, down, and strange quarks. First
attempts used mass formula method to predict remain-
ing states with given radial and orbital excitations where
several parameters were determined by observed masses.
Later, brute force applications of potential model cal-
culations were made for the light quark meson systems
and met with unexpected successes in explaining nearly
the whole meson system from = to T in one systematic
viewpoint [9]. The difference between the heavy quark
and the light quark systems is taken to be the relativis-
tic motions of light quarks in contrast to the assumed
non-relativistic motions of heavy quarks. The successful
applications of the relativised quark model to the whole
quarkonium system gave new insights with respect to the
strong bound-state problems which have not been explic-
itly solved for highly relativistic cases.

The reason for the unexpected successes can be ex-
plained by introducing effective quark masses in bound-
state problems. For a relativistic system of one quark-
antiquark pair with masses m; and mgy, the equation to
be solved is

H¥ = E¥ (3)

where the Hamiltonian H can be written as H = Hg +
e(r) + Vsp with

Hy= \/p12+m§+\/p,?+m§ (4)

Because of the square root operators, it is difficult to
handle Eq. (3) without expansion, and if we consider the
highly relativistic case p? 3> m?, it is better to introduce
the momentum-dependent parameter M and to expand

as
\/Pi2 +m}

\/M2+m,-2+px"—M2

M m  op?

EREART ®)
where the expansion parameter M includes the momen-
tum expectations in the form [10]

M=\/<p?>+m? (6)

The parameter M is called the effective mass in bound-
state problems and turns out to be larger than the con-
ventional constituent quark mass by a factor of up to
5 or so for light quark systems. However, in the non-
relativistic case, we have

R
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2 2 o oy pi2
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Now the two expanded forms in Egs. (5) and (7) are
equivalent if we consider that the spin-independent po-
tential ¢(r) contains a constant term as in Eq. (2). We
can use the same second-order differential equation to
solve Eq. (3) for any system, and the differences between
various systems are represented by the magnitudes of the
momentum expectations in Eq. (6). The determination
of free parameters in the Hamiltonian H can be carried
out by comparing the calculated and the observed masses
for given combinations of quarks. Although seven pa-
rameters appear in H, we can reduce the number of free
parameters by several methods. Firstly, we consider only
those meson systems composed of equal mass quarks so
that we have only one mass parameter M. Secondly,
the two parameters r, and ry can be fixed to some val-
ues which do not affect the final results {11]. We have
tested various values and have chosen for this paper the
values ry = 10-7 GeV~! and ro = 1.0 GeV~!. Finally,
the constant b can be determined by the mass of the 15
triplet state for each combination of quarks. The remain-
ing three parameters are the effective quark mass M, the
potential parameter a, and the strong coupling constant
a,. We vary these parameters to fit the spectra of four
different meson systems: ui (combination of u and d
quarks), s5, ¢Z, and bb. Best values for these parame-
ters have been chosen in such a way that the root-mean-
square mass difference

am = \/ § (B - By ®)

becomes a minimum, where E{*' and E?* represent the
calculated and the observed masses and N is the number
of observed states. We used 11 isotriplet ui states, 11
¢ states, and 12 bb states from the 1994 Particle Data,
however, in the low-mass isosinglet states, problems of
appropriate assignments occur.- These assignments in the
quarkonium model will be given in the next section.

Table 1. Possible assignments of isosinglet mesons to 33 states.

II1. ASSIGNMENTS IN THE QUARKONIUM
MODEL

Most of the observed meson states can be explained
as ¢ states with given quantum numbers corresponding
to appropriate quantum states formed by spin-spin, spin-
orbit couplings, and radial and orbital excitations. The
assignments of observed states to ¢g states can be car-
ried out without uncertainty for many mesons; however,
uncertainties arise when several g states exist with the
same quantum numbers. For example, in a given combi-
nation of ¢¢, the quantum numbers of the s-wave triplets
are the same as those of the D-wave triplet vector parti-
cles, and for different combinations of flavors such as ui,
55, ¢¢, and b5, the same set of quantum states occurs.

In the 1994 Particle Data, there are 25 isosinglet
mesons which are well established and can be taken to
be composed of light quarks or gluons. In the quarko-
nium model, we have to assign these mesons to uu or
85 states, and since the number of states is restricted
for given energy ranges the possibility of an exotic state
which cannot be assigned to any quarkonium state ex-
ists. In order to check-out various possibilities, we need
to analyze as many assignments as possible, and these
procedures can be reduced significantly by fixing some
mesons to appropriate states. We can fix the six states
n(547), n(1295), w(782), w(1419), h,{1170), and w3(1668)
to the isosinglet uu 1!S,, 2'Sy, 135, 235,, 1'P;, and
13D; states, respectively. Furthermore, the five states
7' (958), 7(1420), ¢(1019), #3(1854), and f,(2044) can
be fixed to the s5 11Sg, 2!Sp, 135;, 13D,, and 13F,
states [12]. We have found that two states f,(1282) and
J2(1275) cannot be assigned to any s§ state; and there-
fore, these states have to be assigned to the isosinglet
uii 13P; and 13P; states, respectively. The other re-
maining 12 states have possibilities of being assigned to
some 55 states, and these possibilities are listed in Ta-
ble 1. There are 5, 4, 2, and 12 possible assignments
for the states with quantum numbers JPC = 1=~ 0++,
1**, and 2+*, and we have considered all these 480 cases

mesons possible 33 assignments

u(1662) 215) 2151 PD;

#{1680) 1*D, 2S5, 25, 1° D,

fo(980) 1°P, 7P,

fo(1300) 1*Py

Jo(1598) PP 2P

f1(1419) 1°P

11(1512) 1°P,

£2(1525) 1P, P, P, I'P, 1P

11(1709) . 1¥*p, 1R 1R PP

f2(2011) 2p  2*P 2P, P PP PR
f2(2297) 2P, 2P 2P,

£2(2339) PP 2P, 2P, 2P,
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to calculate the parameters by the least-squares method.
For the 280 cases in which f,(2297) and f2(2339) are as-
signed to the 55 2P, state and f,(2011) to the 55 13P,
state, the Am are larger than 100 MeV, so we cannot
assign these mesons to states above the s5 states. Of the
remaining cases, the number of acceptable assignments
with Am smaller than 100 MeV is 192. In the remaining
5 cases of JPC = 2++ assignments, Am becomes small-
est in the case where the 3 states f;(1525), f2(2011), and
£2(2339) are fixed to the isosinglet s5 13P,, 23P,, and
33 P, states, respectively. Aithough it is equally probable
to assign fo{980) or f5(1300) to the 13 P 55 state in the
four JP€ = 0** assignments, we have chosen fo(1300),
which has larger frequencies than fo(980), to be assigned
to 13P, state. For the JP€ = 1=~ assignments, both
of the states w(1662) and ¢{1680) can be assigned to s5
states, but we have selected w(1662) for the 235; 55 state
because Am is smallest in this case. In the long run, we
have found that it is equally probable to assign f,{1427)
or fi(1512) to the 13P; s state for the acceptable as-
signments, but we have assigned f1(1427) to the 13P
55 state for the same reason as above. Hence, we have
assigned 7 (958), 7(1420), ¢(1019), w(1662), £2(1525),
F2(2011), f2(2339), f1(1427), fo(1300), ¢3(1854), and
£4(2044) to the isosinglet 55 11 So, 21 So, 135,,235,,13P,,
2P, 33P;, 13P,, 13P;, 13D3, and 13F states, respec-
tively. In a similar way, we can fix the 11 states 7(135),
7(1300), p(770), p(1465), 6,(1231), a2(1318), a,(1230),
ao(982), 72(1670), p3(1691), and p(1700) to the isotriplet
u@i 1155, 2155, 135,, 2351, 1} Py, 13P,, 13P, 137, 11 Dy,
13Ds, and 13D, states, respectively. Furthermore, the 11
states 1.(2979), 7.(3590), J/¥(3097), ¥:(3686), ¥(4040),
¥(4415), x.,(3556), xc, (3511), xc,(3415), ¥(3770), and
¥(4159) can be fixed to ¢& 11 Sp, 2! Sp, 138,, 235, 3351,
13P;, 13P;, 13P;, 13D, and 23D, states. Finally, we can
fix the 12 states T(9460), T(10023), T(10355), T(10580),
T(10865), xs,(9913), x»,(10269), x»,(9892), xs,(10255),
Xbo(9860), x3,(10232), and Y(11019) to the bb 135,
235,, 338;, 435, 5351, 13P,, 2Py, 18P, 22Py, 13P,
23P,, and 43D, states, respectively.

IV. PARAMETER FITTING-BY THE
LEAST-SQUARES METHOD

In the isotriplet sector, there are 11 fixed states, and we
can calculate Am for this sector. There are now three
parameters 2m = m; = my, a, and a,. We can vary
these parameters to check for the best fit by minimizing
the value of Am. In fact, we varied the parameters in
the regions

1.40 € 2m < 1.64 GeV,

22<a<31Gev!,

060 < a, <0.94, (9)
and selected 13, 10, and 15 values respectively for each
parameters, so the total number of calculated Am values

800

600 F . -

RMS MASS DIF

0 500 1000 1500
X

Fig. 1. The root-mean-square mass difference of uz meson
systems. The total number of calculated Am values is 1950.

68 —— . —
. 66 .
=]
fan
[72] L . - D4
Loat o .
3 . o
[22]
=
= 62 | -
60 . , ) ]
o 500 1000 1500
X

Fig. 2. The root-mean-square mass difference of ui meson
systems. The y-axis of Fig. 1 is enlarged.

was 1950 (= 13 x 10 x 15). Then, we piotted all of these
Am values along the y-axis in the Fig. 1, but the values
of X correspond to the triplets of the parameters. For
example, X = 1 corresponds to the parameters 2m =
140 GeV,a = 2.2 GeV™?} a, = 0.60,and X = 2 to
2m = 1.40 GeV, a = 2.2 GeV~!, o, = 0.62, --, and
X = 1950 to 2m = 1.64 GeV, a = 3.1 GeV™}, a, =
0.94. The values of Am are distributed in the region
60 < Am < 800 GeV, and the minimum value equals
63.20 MeV at X = 985 which corresponds to 2m = 1.52
GeV,a =270 GeV~!, and a, = 0.84. However for each
value of 2m, the corresponding minimum values of Am
are distributed in the region 63 < Am < 67 GeV, and
these points are distributed along a curve similar to 2
quadratic function, as shown in Fig. 2.

For further calculations, we varied these parameters
again. The regions of these parameters which include
the minimum values of Am for every 2m value of Fig. 1
are
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Fig. 3. The root-mean-square mass difference of ud meson
systems. The total number of calculated Am values is 1890.
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Fig. 4. The root-mean-square mass difference of ué meson
systems. The y-axis of Fig. 3 is enlarged.

1.40 € 2m < 1.69 GeV,
230<a<3.15GevV™
077 < a, <093, (10)

and the selected number of values for each parameter
was 30, 7, and 9, respectively, so the total number of
calculated Am values was 1890 (= 30 x 7 x 9). We have
also plotted all of these Am values along the y-axis in
Fig. 3, and the y-axis of this figure is enlarged in Fig. 4.
From Fig. 4, the minimum value of Am equals 62.84 MeV
at X = 927, which correspond to 2m = 1.54 GeV, a =
2.70 GeV~! and a, = 0.85. We have also shown that
the minimum values of Am are distributed according to
a quadratic function as in Fig. 4.

Finally, we varied these parameters in the following
regions:

RMS MASS DIF.

Fig. 5. The root-mean-square mass difference of u@ meson
systems. The total number of calculated Am values is 825.

400 ey
350 b ’

300F -

daaaalaansal

RMS MASS DIF.

0 1. 1 A
0 400 800

X

Fig. 6. The root-mean-square mass difference of 35 meson
systems. The total number of calculated Am values is 1568.

67 e T
66 [ o e ]

65 | o T ]

RMS MASS DIF

63 + B

62 L i L

0 400 800 1200
X

Fig. 7. The root-mean-square mass diflerence of 35 meson
systems. The y-axis of Fig. 6 is enlarged.
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RMS MASS DIF.

0 L . L

0 400 800 1200
X

Fig. 8. The root-mean-square mass difference of s3 meson
systems. The total number of calculated Am values is 1512.

68 ey =
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3

64 [ - ]
63 F .
62 1. 1 1

0 400 800 1200

X

Fig. 9. The root-mean-square mass difference of 33 meson
systems. The y-axis of Fig. 8 is enlarged.

1.47 < 2m < 1.62 GeV,
254<ax<292 GeV™?,
0.810 < a, < 0.888. (11)

We selected 16, 5, and 11 values respectively for each
parameters, so the total number of calculated Am values
was 825 (= 15 x 5 x 11). We have plotted all of these Am
values in Fig. 5, and the minimum value of Am equals
62.81 MeV at X = 416, which corresponds to 2m = 1.54
GeV, a = 2.71 GeV~!, and a, = 0.850. Therefore, we
may say that these are the parameters which produce the
best fit in the isotriplet sector.

In the s5 sector, 1] states were assigned. Therefore,
we could calculate the values of Ag. Firstly, we varied
the parameters in the regions

1.48 < 2m < 2.02 GeV,
22<a<25GeVT!,
0.42< a, < 0.68, (12)

and the total number of calculated Am values was 1568

65.0 . . —

. 645F | SRR

= .

[79] -

% 61.0

=

Ui

=

® 635

63.0 L . .

0 400 800 1200

Fig. 10. The root-mean-square mass difference of 33 meson
systems. The total number of calculated Am values is 1440.

63.6 -

635

63 4

633

RMS MASS DIF

63 1 L N L
0 400 800 1200

X

Fig. 11. The root-mean-square mass difference of s3 meson
systems. The y-axis of Fig. 10 is enlarged.

(= 28 x 4 x 14). The minimum value of Am was 63.56
MeV at X = 746, which means 2m = 1.74 GeV, a = 2.30
GeV~!, and a, = 0.48. These data are shown in Fig. 6
and Fig. 7. Secondly, we varied the parameters in the
regions

1.48 < 2m < 1.94 GeV,
224 <a<242GevV7?,
0.36 < a, < 0.60, (13)

and the total number of calculated Am values was 1512
(= 24 x 7 x 9). The minimum value of Am was 63.32
MeV at X = 1041, which means 2m = 1.80 GeV,a = 2.34
GeV~!, and o, = 0.50. These are shown in the Fig. 8 and
Fig. 9. For the final procedure of this isosinglet sector,
we varied the parameters in the regions

1.70 < 2m < 1.85 GeV,
229<a<236GeV™!,
0471 < a, < 0516, (14)

and the total number of calculated Am values was 1440
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Fig. 12. The root-mean-square mass diflerence of cZ meson
systems. The total number of calculated Am values is 576.
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Fig. 13. The root-mean-square mass difference of cZ meson
systems. The y-axis of Fig. 12 is enlarged.

(= 16 x 5 x 18). We have shown all of these values of
Am in Figs. 10 and 11, and the minimum value of Am
for this isosinglet sector is 63.26 MeV and occurs at X =
674, which means 2m = 1.77 GeV, a = 2.33 GeV~}, and
a, = 0.493.

In the charmonium sector, we calculated Am in the
same way as before by using 11 states. For the last cal-
culation of this sector, we varied the parameters in the
regions

1.82 < 2m < 1.93 GeV,
249<a <252GeVTt
0.464 < a, < 0.494, (15)

and the total number of calculated Am values was 576
(= 12 x 3 x 16). All of the calculated values of Am are
shown in Figs. 12 and 13, and the minimum value of
Am is 16.64 MeV and have occurrs at X = 313, which
corresponds to 2m = 1.88 GeV, a = 2.50 GeV™!, a, =

30.6 T T T

04 b ;
30.2 ¢ T e e E
30.0 f T

298

RMS MASS DIF.

29.6

29.4 : : .
0 500 1000 1500

X

Fig. 14. The root-mean-square mass difference of b meson
systems. The total number of calculated Am values is 1680.

2950 — — - T
2949 F - -9
o 2948F . S S
< - R .
= - - ]
2047 b
122} -
=
a
2046 | 3
29 45 . .
0 500 1000 1500
X

Fig. 15. The root-mean-square mass difference of b meson
systems. The y-axis of Fig. 14 is enlarged.

0.474 .
Finally, we calculated the Am values in the bottonium
sector. We varied the three parameters in the regions

5.171 < 2m < 5.310 GeV,
222<a<224Gev7!,
0.327 < a, < 0.336, (16)

and the total number of calculated Am values was 1680
(= 140 x 2 x 6). We have shown all of these Am values
in Fig. 14, and, as before, the minimum values of Am
for every 2m value are shown clearly in Fig. 15. The
minimum value of Am is 29.47 MeV and occurrs at X
= 623, which corresponds to 2m = 5.223 GeV, a = 2.23
GeV~! and a, = 0.332. If we vary the parameters & and
a, more densely than those shown here, the distribution
of these local minimum values is thought to be similar to
plot of quadratic function, as before.
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Table 2. Calculated and observed masses of mesons in units of MeV. The numbers in parentheses are the values of the

experimental masses.

uii 33 cé b
Exp.(I=1) Cal. Exp.(I=0) Exp. Cal. Exp. Cal. Exp. Cal.
17 So x(135) 220 7(547) n (958) 873 n(2979) 2975 9431
2'So *(1300) 1349 7(1295) n(1420) 1587 7(3590) 3620 10000
315 1819 2046 4032 10351
1’5, #(770) 770 w(782) #(1019) 1019 J/v(3097) 3097 Y(9460) 9460
S, p(1465) 1483 w(1419) w(1662) 1651 ¥(3686) 3673 T(10023) 10009
3%s, 1907 2093 ¥(4040) 4070 Y(10355) 10358
4°5, 2248 2463 ¥(4415) 4403 Y(10580) 10643
525, 2546 2794 4700 T(10865) 10895
1'p b1(1231) 1339 k1 (1170) 1478 3522 9900
2P 1784 1941 3937 10260
1P, a2{1318) 1397 f2(1275) f2(1525) 1501 Xe,(3556) 3541 xs,(9913) 9909
2P, 1829 fs(1709) f2(2011) 1963 3955 xb,(10269) 10268
3P, 2176 £2(2297) 12(2339) 2346 4299 10561
PP a,(1230) 1235 f1(1282) £1(1427) 1454 X<, (3511) 3503 xb, (9892) 9892
2P 1702 1917 3919 xb, {10255} 10253
1P, a0(982) 954 fo(980) fo(1300) 1303 Xeo(3415) 3416 X50(9860) 9864
2P, 1609 fo(1581) 1809 3857 Xb,(10232) 10232
1'D, $2(1670) 1656 1783 3799 10146
1°D, pa(1691) 1677 w3(1668) #3(1854) 1785 3799 10148
1°D, £(1700) 1580 #(1680) 1768 ¥(3770) 3784 10140
2D, 1943 2162 ¥(4159) 4139 10443
D, 2257 2509 4451 10706
4D, 2541 2825 4735 T(11019) 10945
1°F, 1901 f1(2044) 2024 4016 10341
2000 2500 ———— T r T
.
5 5
L LN
= z
v 1000 —_— ‘Z 1500
3 S =
500 | 8 1000 | .
.......... o % b
—
0 L 0 . L L

S

P

D F

S P

D F

Fig. 16. Positions of the S-, P-, and D-wave uii levels.
Solid lines represent experimental spectra, and dashed lines
represent calculated spectra.

V. CALCULATED RESULTS

The calculated, along with the experimental, spectra
are shown in Table 2 and plotted in Figs. 16, 17, 18,
and 19. The determined values of the parameters are

Fig. 17. Positions of the S-, P-, and D-wave 53 Jevels. Solid
lines represent experimental spectra, and dashed lines repre-
sent calculated spectra.

also displayed in Table 3, where the minimum values of
Am are given. In Table 2, 24 isosinglet mesons are as-
signed to ut and s5 states, and the remaining meson is
£1(1512). This meson cannot be assigned to the 23P; s5
state which is predicted to have a mass of 1915 MeV.
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Fig. 18. Positions of the S-, P-, and D-wave célevels. Solid
lines represent experimental spectra, and dashed lines repre-
sent calculated spectra.

11000 e B
S
i

igse0 b

Fig. 19. Positions of the 5-, P-, and D-wave b5 levels. Solid
lines represent experimental spectra, and dashed lines repre-
sent calculated spectra.

However, it can be assigned to the 13P;, s3 state as in
Table 1, and we have found that it is equally probable
to assign f,(1419) or f1(1512) to the 13 P, s5 state. An-
other possibility is to assign one of these two state to the
23 Py ui state which is predicted to be at 1702 MeV, but
the mass diflerences between the predicted ang observed
states are large enough to include this possibility. Then,
we can conclude that either f,(1419) or f1(1512) cannot
be assigned to any ¢4 state.

Now we turn to the determined parameters listed in
Table 3. We can see that the strong coupling constant

s
4~ Qur Results
0.8}
{ Others
06}
04}
o2t
" . . -
1
10 100 GeV)

Fig. 20. The values of a, with horizontal error bars deter-
mined by Eq. (21) are compared with other experimental data
points. Solid curves correspond to Ay s = 350, 250, 150, and
100 MeV from top to bottom.

Table 3. Determined parameters for each quarkonium sys-
tem.

| M (GeV) o, a (GeV™!)  Am (MeV)
ui 1.54 0.850 2.1 62.81
S8 1.77 0.493 2.33 63.26
¢t 1.88 0.474 2.50 16.64
11 5.223 0.332 2.23 29.47

varies according to the related momentum included in the
effective quark mass M [13]. The ratio between the mo-
mentum expectation value and the effective quark mass
1s

- v<pl> (17)
T /<pis+m?

which can be calculated when the quark masses are given.
For example, if we take the quark masses in unit of GeV
as [14]

m, =033, m,=045 m.=135 m, =45, (18)

the f factor becomes
f.=0976, f, =0967 f.=0603. f, =0.508(19)

for each quark system. By considering this factor, we
may choose the relevant momentum scale p for a, as

p= M. (20)

However, it is well-known that there exist scale ambigu-
ities associated with the determination of the renormal-
ization scale for a,. These ambiguities can be used to
estimate the theoretical errors in a, [15], and, in general,
the best fitted energy scale turns out to be considerably
smaller than the typical energy scale in scattering prob-
lems {13]. In bound-state problems, it is not so easy to
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fix the appropriate scale boundaries, and one lower limit
can be set at half the typical scale, as in some scattering
examples [16]. For this choice, we have

SIMSuSIM, (21)

and the error bars can be drawn as in Fig. 20 in which
other experimental data are also shown. We can see that
the new results from spectroscopic analysis turn out to
be complementary with respect to those from high-energy
analyses.

V1. DISCUSSION

We have calculated the strong coupling constants and
the effective quark masses for four different meson sys-
tems, uii, s, ¢¢, and b}, by considering first-order spin-
dependent forces with the linear plus Coulomb potential
model to fit the observed mass spectra. These parame-
ters were determined by the least-squares method, and
the calculated and observed masses were compared. For
low-mass isosinglets, we considered 480 possible assign-
ments and found 192 acceptable cases from which we can
conclude that either f;(1419) or f1(1512) should be an
exotic state not assignable to any ¢§ state. From the de-
termined effective quark masses, we deduced the relevant
momentum scales for a,, and the results were consistent
with other experimental data. We also showed in some
figures that minimum values of Am exist for each quarko-
nium system, but it remains to be confirmed by using a
genetic algorithm that these minimum values of Am are
really local minima.
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