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ENERGY MINIMIZING MAPS FROM ANNULUS TO 52

GIE HYUN PARK

ABSTRACT. Bethuel, Brezis, Coleman and Helein considered energy minimiz-
ing maps from an annulus Q, = {(z,y) € R?|p? < 22 +y? < 1} to sphere S?
and showed that for p > e™", uo(z,y) = (%, ?_-,0) is the only minimizer, and
that for p < e~*, there is a unique minimizer in the class of radially symmetric
maps (or radial maps), and it differs from ug when p < e~". Sandier showed
that a minimizer is actually radially symmetric. In this paper we present a
more elementary and shorter proof.

1. Introduction

In this paper we consider energy minimizing maps from an annulus , =
{(z,y) € R?|p? < z? 4+ y? < 1} to the unit 2-sphere S? = {(z,y,2) € R®|z? +
y?+2? = 1} among the admissible class F, of maps that agree on the boundary
0, with the map uo(z,y) = (%, £,0), where r = /22 + y2.

Recall that, roughly speaking, the energy functional E for a map u is
defined to be

1
E(u)=; /Q Vul?,

where 2 is the set on which u is defined.

We specify our admissible class F, of maps as

F,={u€ H(Q,,5%) : u = uy at boundary 99Q,}

F. Bethuel, H. Brezis, B. D. Coleman and F. Helein [1] showed that
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-For p > 7™, uo(z,y) = (%, £,0) is the only minimizer.

—For p < e 7, there is a unique minimizer in the class of radially symmetric
maps (or radial maps), and it differs from 1o when p < e™™.

A radial map u is a map which is equivariant under the rotation of {2, round
z-axis. For any rotation R, a radial map u satisfies u o R(z,y) = R o u(z,y)

so that

u(z,y) = (= cos(9(r)), * cos(¢(r)),sin(4(r))),

for some real valued function ¢(r).

E. Sandier [2] proved that if u is a minimizer for the problem

min / |Voul?,
vE}', Qp

then u is actually radially symmetric.
In this paper we will prove the above results in elementary ways and show
that the unique solution is related to the simple pendulum, which can be

stated as the following Main Theorem.

Theorem. The minimizer is radially symmetric and
-For p > e™7, uo(z,y) = (%.%,0) is the only minimizer.
—For p < e™7, there is a unique minimizer which comes from the pendulum

equation.

2. Symmetry of minimizers

To prove the Main Theorem we need following Lemmas.

Lemma 1. The functional

Wio) =

[V

I ((5‘1) +cos2(¢)> ds,
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defined for maps ¢ with ¢(0) = 0 = ¢(c), assumes its infimum at ¢(s) = 0
if ¢ < m, otherwise at ¢ which is the angle function of a simple pendulum

starting from the bottom and returns to it only at the time c.

Proof. The Euler-Lagrange equation is
(1) 2d2—¢ + 2 cos(¢)sin(¢) =0

ds? ’
This is the equation describing the motion of a simple pendulum. Behavior of
its solutions is well-known and well-formulated in terms of elliptic functions
of first type.

If nm < ¢ < (n + 1)m, there are n + 1 solutions. First one is the constant
function ¢o(s) = 0. But this is not a minimizer of W if 7 < ¢. To see this
we consider the perturbation ¢;(s) = tsin(Zs). The second derivative of the
energy perturbation is

d2
de?
d

== {/(; 15(1:')2 cos?( %s) — cos(t sin(%s)) sin(tsin(%s)) sin({-s)}

= /;(%)2 cosz(zrc-s) + sin®(t sin(%s)) sinz(—gs) — cos?(t sin(gs)) sinz(%s).

W(4:)

Thus

d2
FWM‘)

. = '/OC(%)2 cos2(—gs) - sinz(gs) = ((%)2 - 1)%

This is negative if 7 < c.

Other solutions ¢ vanishing at some interior points can not be a minimizer.
We will define ¢(s) which has less energy than ¢. The graph of ¢ is similar
to that of sine function. We flip it, i.e., we consider the graph of |¢|. Erase
between the first maximum point and the last one and connect two points by
straight line. Let 1 be a function of which the graph is what we made.

Then clearly W (i) < W ().

The remaining possibility for a minimizer is what we want.
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Lemma 2. The functional
2w

F(¢)= [ (#(6)"ds
0
defined for functions ¢ with $(0) — #(2w) = 27 assumes its infimum when
#'(6) =1.
Proof. Easy. I will not use the ink to elaborate this.

Proof of the Main Theorem. The energy functional in polar coordinate,

W(u) = / /2" { 2} rd@dr,

may be reduced to the following forin by the change of variables r = ¢~*

(2) W(u) = /_logp/h{ }dods

We use the spherical coordinate for u, i.e. we put u = (cos ¢ cos 1, sin ¢ cos 1,

sin). This changes (2) to

ou|? Ju

%

oul?
s

ou
30

W(u)

L e (3 () + (@) +(3))

Putting f(s) = maxg |¢(s,0)| and using the Lemma 2, we obtain

R ORE ORI
) (2
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In the above the equality of the last holds if and only if %%’- = 0. In this
case (s, 8) = f(s), i.e., ¥ is independent of . The second inequality holds if

and only if ¢(8) = 8. Thus if u is energy minimizing u is radially symmetric
2

and in this case W(u) = 1og pf {0052 ¥+ (‘Z_'f) }d&ds. Now Lemma

1 completes the proof.
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