제한된 최소화 문제에 있어서 STEEPEST DESCENT METHOD 와 수치해석적인 접근 방법에 관한 연구

金 益 成*·高 鳳 秀**

THE STEEPEST DESCENT METHOD AND NUMERICAL APPROXIMATIONS FOR CONSTRA INED MINIMIZATION PROBLEMS

Kim, Ik-Sung · Ko, Bong-Soo

초 록

본 논문에서는 제한된 최소화 문제의 해의 존재성과 유일성에 관한 조건들을 연구하고, 수치 해석적 접근방법으로 STEEPEST DESCENT METHOD를 사용하여 근사해를 구 하는 방법을 얻었다.

I. Introduction

In author's Master thesis[1], the concept of generalized inverse and restricted generalized inverse were introduced. The concept of the restricted generalized inverse possesses a constrained best approximation property and has applications to certain constrained minimization problems.

[•]여세대학교 대학원 수학과

^{••}제주대학교 사범대학 수학교육과

2 科學教育 5卷(1988.12)

In this paper, solutions of constrained minimization problem are studied; Among all least squares solutions of Lx = z, find an element w which minimizes || Ax-y ||, where X, Y, Z are Hilbert spaces, A: $X \rightarrow Y$, L: $X \rightarrow Z$ are bounded linear operators and $x \in X$, $y \in Y$, $z \in Z$.

Especially, as one of the numerical method, the method of steepest descent is used to . anlayze their approximation.

2. The Restricted Generalized Inverses of Bounded Linear Operators with Closed Ranges

The restricted generalized inverse possesses the following constained best approximate solution property : let $y \in Y$ and $\bar{u} = T_s^+ y$. Then

(1) $S\bar{u}=O$.

(2) $\| T\bar{u}-y \| \leq \| Tu-y \|$ for all $u \in N(S)$.

(3) $\| \bar{u} \| \leq \| u \|$ for all $u \in N(s)$ such that $\| T \bar{u} - y \| = \| T u - y \|$.

Proposition 1. Let $T: X \rightarrow Y$, $S: X \rightarrow Z$ be two bounded linear operators with closed ranges, and let $z \in R(S)$ and $y \in Y$. Then there exists a unique element $\bar{u} \in X$ satisfying the following conditions.

- (1) $S\bar{u}=z$.
- (2) $|| T\bar{u}-y || \leq || Tu-y ||$ for all $u \in \{u : Su=z, u \in X\}$.

(3) $\| \bar{u} \| \leq \| u \|$ for all such u with $\| T \bar{u} - y \| = \| T u - y \|$

and $\tilde{u} = T_s^+$ (y-TS⁺z)+S⁺z, where T is the restriction of T onto N(S).

Proof) Since T and S have closed ranges, thus the existence is obvious. Now let

$$Wz = \{S^+z + x : x \in N(S)\}.$$

Then since $S\bar{u} = z$ thus $\bar{u} \in Wz$. Let $\bar{u} = S^+z + u_1$, where $u_1 \in N(S)$. Then by condition(2), $\parallel T(S^+z + u_1) - y \parallel \leq \parallel T(S^+z + x) - y \parallel$

for all $x \in N(S)$ if and only if

 $|| T(u_1) - \{y - T(S^*z)\} || \leq || T(x) - \{y - T(S^*z)\} ||$

for all $x \in N(S)$. T_s has closed range thus $y - T(S^+z) \in D(T_s)$. Namely, u_1 can be represented by $T^+{}_s\{y-T(S^+z)\} + P$, where $P \in N(T) \cap N(S)$. But by condition(3), necessarily, $\bar{u} = S^+z + T^+{}_s\{y-T(S^+z)\}$. 제한된 최소화 문제에 있어서 STEEPEST DESCENT METHOD와 수치해석적인 접근 방법에 관한 연구 3

3. Constrained Minimiztion Problems in Bounded Linear Operators with Arbitrary Ranges

Let X, Y, Z be three(real or complex) Hilbert spaces, and A : $X \rightarrow Y$, L : $X \rightarrow Z$ are bounded linear operators and R(L) is closed. We consider the following minimization problem :

Among all least squares solutions of Lx = z, find an element w which minimizes

|| Ax−y ||.

Proposition 2. Let $Wz = \{x \in X : x \text{ is a least aquares solution of } Lx = z, z \in Z\}$. Then $w \in Wz$ such that $|| Aw-y || \leq || Ax-y ||$ for all $x \in Wz$, where $y \in Y$ if and only if $A^*Aw-A^*y \in N(L)$.

Proof) Since every least squares solution of Lx = z can be represented by $L^+z + w$, where $w \in N(L)$, $Wz = \{L^+z + w_1 : w_1 \in N(L)\}$.

Now, let we Wz such that $|| Aw-y || \leq || Ax-y ||$ for all $x \in Wz$. Then

$$|| A(L^+z+w_1)-y || \leq || A(L^+z+x_1)-y ||$$

for all $x_1 \in N(L)$, where $w = L^+ z + w_1$. It shows that

 $\|Aw_1 - \{y - A(L^+z)\}\| < \|Ax_1 - \{y - A(L^+z)\}\|$ (1)

for all $x_1 \in N(L)$. Note that N(L) is a closed subspace of X.

Now, consider the restriction of A onto N(L), denoted by A_L . Since $Y = \overline{R(A_L)} + R(A_L)^*$, the above condition(1) is equivalent to $Aw_1 - \{y - A(L^+z)\} \in R(A_L)^*$. Thus for all $x \in N(L)$ $(Ax, Aw_1 - \{y - A(L^+z)\}) = 0$

if and only if

 $(x, A^*Aw_1 - A^*(y - A(L^*z))) = 0$

for all $x \in N(L)$. Namely, $A^*Aw - A^*y \in N(L)$.

Proposition 3. There exists a unique we Wz if and only if $N(A) \cap N(L) = \{0\}$.

Proof) (\Leftrightarrow). Suppose that N(A) \cap N(L) = {0}. Then since N(A_L) = {0} thus there exists a unique w₁ ϵ N(L) such that $|| Aw_1 - \{y - A(L^+z)\} || \leq || Ax_1 - \{y - A(L^+z)\} ||$ for all x₁ ϵ N(L). It shows that there exists a unique w = L⁺z + w₁ ϵ Wz such that $|| Aw-y || \leq || Ax-y ||$ for all x ϵ Wz.

(⇒). Suppose that $N(A) \cap N(L) = \{0\}$ then there exists at least one $w_2 \in N(A) \cap N(L)$ whch is not zero. Thus, $||Aw-y|| = ||A(w+w_2)-y|| \leq ||Ax-y||$ for all $x \in Wz$.

- 163 -

4 科學教育 5卷(1988.12)

Consequently, w is not unique.

Proposition 4. Let $wz = \{x \in X : x \text{ is a least squares solution of } Lx = z\}$ and let A_L be the restriction of A on N(L). Suppose that $y - A(L^+z) \in D(A_L^+)$ and $N(A) \cap N(L) = \{0\}$. Then there exists a unique $w \in Wz$ such that $|| Aw - y || \leq || Ax - y ||$ for all $x \in Wz$ and $w = A_L^+ \{y - A(L^+z)\} + L^+z$.

Proof) Since $y - A(L^+z) \in D(A^+_L)$, by Proposition 2 and Proposition 3 there exists a unique we Wz such that $||Aw-y|| \leq ||Ax-y||$ for all $x \in Wz$.

Now, suppose that $w = w_1 + L^+ z \varepsilon W z$ such that $||Aw-y|| \leq ||Ax-y||$ for all $x \varepsilon W z$. Then

$$\|Aw_{i} - \{y - A(L^{+}z)\}\| \leq \|Ax_{i} - A(L^{+}z)\}\|$$

for all $x_1 \in N(L)$. Thus $w_1 = A_L^+ \{y-A(L^+z)\}$. Consequentoy, $w = A_L^+ \{y-A(L^+z)\} + L^+z$.

Theorem 5. Let X,Y, Z, be Hilbert spaces and let $A : X \rightarrow Y, L : X \rightarrow Z$ be bounded linear operators, where R(L) is closed. Then the following conditions are equivalent;

(1) There exists we Wz such that $|| Aw-y || \leq || Ax-y ||$ for all $x \in Wz$, where $y \in Y$.

(2) $A^* Aw - A^*y \epsilon N(L)^{\perp}$

(3) $y-A(L^+z) \in D(A^+_L)$, where A_L is the restriction of A on N(L).

Proof) By Proposition 2 and 4, the proof is so easy.

Theorem 6. Let X, Y and Z be Hilbert spaces, and A : $X \rightarrow Z$, L : $X \rightarrow Z$ be bounded linear operators, where R(L) is closed. Suppose that N(L) \cap N(A) = $\{0\}$ and R(A) is closed, then for all $y \in Y$ and $z \in Z$ there exists a unique we Wz such that

$$\| \mathbf{A}\mathbf{w} - \mathbf{y} \| \leqslant \| \mathbf{A}\mathbf{x} - \mathbf{y} \|$$

for all $x \in Wz$, where $Wz = \{x \in X : x \text{ is a least squares solution of } Lx = z\}$.

Proof) By assumption, since $R(A_L)$ is closed thus for all $y \in Y$, $y-A(L^+z) \in D(A^+_L)$ and by Proposition 4 there exists a unique $w \in Wz$ such that $||Aw-y|| \leq ||Ax-y||$ for all $x \in Wz$.

Theorem 7. Let $N(L) \cap N(A) = \{0\}$ and let $R(A_L)$ be closed and suppose that (x_n) is a sequence of approximations which converges to L^+z , then we can find an approximation \bar{x} of w which $|| w-\bar{x} || < \epsilon$ for arbitrary $\epsilon > 0$, where $w \epsilon W z$ such that || Aw-y || for all $x \epsilon W z$.

재한된 최소화 문제에 있어서 STEEPEST DESCENT METHOD 와 수치해석적인 접근 방법에 관한 연구 5

Proof) By assumption, A_L has a closed range. It shows that A^+_L is bounded. Since x_n converges to L^+z , for arbitrary $\varepsilon > 0$ we can take x_n such that

$$\| L^{+}z - x_{n} \| < \min \left(\frac{\varepsilon}{2 \|A_{L}^{+}\| \|A\|}, \frac{\varepsilon}{2} \right)$$

Since $y - A(x_{n}) \varepsilon D(A^{+}_{L})$, let $\bar{x} = A^{+}_{L} \{y - A(x_{n})\} + x_{n}$, then
$$\| w - \bar{x} \| \leq \| A^{+}_{L} \{A(L^{+}z - x_{n})\} \| + \| L^{+}z - x_{n} \|$$
$$\leq \| A^{+}_{L} \| \| A \| Lz + Lz - x$$
$$< \varepsilon .$$

Namely,

$$\| \mathbf{w} - \bar{\mathbf{x}} \| < (\| \mathbf{A}^{+}_{\mathbf{L}} \| \| \mathbf{A} \| + 1) \| \mathbf{L}^{+} \mathbf{z} - \mathbf{x}_{n} \|.$$

As an application, we consider an example by using of steepest descent method.

Proposition 8 The sequence (x_n) converges to L^+z , where $x_{n+1} = x_n - a_n r_n$, $r_n = L^*L_X - L^*$ z, $a_n = || r_n ||^2 / || Lr_n ||^2$. Its speed of convergence is given by the inequality

$$\|\mathbf{x}_n \cdot \mathbf{L}^2 \mathbf{z}\| \leqslant C \left(\frac{\mathbf{M} - \mathbf{m}}{\mathbf{M} + \mathbf{m}}\right)^n \qquad (n = 0, 1, 2, \dots : C = \mathbf{0})$$

Proof) Since R(L) is closed, Lz exists for all $z \in Z$. This method is steepest descent method and the convergence is obvious. For the detail proof, see Kantovich[3, p. 446] Example. Among $Wz = \{x \in X : \text{ is a least squares solution of } Lx = z\}$, we consider the problem of researching an approximation \bar{x} of $w \in Wz$ such that $|| Aw-y || \leq || Ax-y ||$ for all $x \in Wz$. Let N(A) and N(L) be non-trivial subspaces and N(A) \cap N(L)= $\{0\}$ and R(A_L) is closed.

[STEP 1] Take an initial approximation $x \in N(L)^{\perp}$, and $x_{n+1} = x_n - a_n r_n$ where $r_n = L^{\bullet} Lx_n - L^{\bullet} z$, $a_n = || r_n ||^2 / || Lr_n ||^2$. Then by Proposition 8

$$\| \mathbf{L}^+ \mathbf{z}^- \mathbf{x}_n \| \leqslant \mathbf{C} \left[\frac{\mathbf{M} - \mathbf{m}}{\mathbf{M} + \mathbf{m}} \right]^{\mathbf{n}}$$

where C is a constant and M, m such that m $||x||^2 < (L^*Lx, x) < M ||x||^2$ for all $x \in N(L)$. (see Groetsch[2] or Kantorvich[3])

[STEP 2] Let $\bar{y} = y - A(x_n)$, $y_{n+1} = y_n - a_n r_n$, $r_n = A^*_{\perp} A_{\perp} y - A^*_{\perp} \bar{y}$, $a_n = || r_n ||^2 / || A_{\perp} r_n ||^2$. Then

$$\| y_{p} - A^{+}{}_{L}\bar{y} \| \leqslant \frac{|A_{L}|^{2} |z_{0} - y^{*}|^{2} |e_{0}|^{2}}{|A_{L}|^{2} |z_{0} - y^{*}|^{2} + P |e_{0}|^{2}}$$

where $y^* = P_{R(A)}\bar{y}$, $A^*_L z_o = y_o$, $e_o = y_o - A^+_L \bar{y}$.(see Groetsch [2])

[STEP 3] Take $\bar{x} = y_p + x_q$. Then

 $\| \mathbf{w} - \bar{\mathbf{x}} \| \leq \varepsilon_1 + (\| \mathbf{A}^+_{\mathsf{L}} \| \| \mathbf{A} \| + 1) \varepsilon_2.$

- 165 -

6 科學教育 5卷(1988.12)

where

$$\varepsilon_{1} = \frac{\|\mathbf{A}_{L}\|^{2} \|\mathbf{z}_{0} - \mathbf{y}^{*}\| \mathbf{e}_{0} \|^{2}}{\|\mathbf{A}_{L} \|\mathbf{z}_{0} - \mathbf{y}^{*}\|^{2} + \mathbf{P} \|\mathbf{e}_{0}\|^{2}}$$
$$\varepsilon_{2} = C \left(\frac{\mathbf{M} - \mathbf{m}}{\mathbf{M} + \mathbf{m}}\right)^{q}$$

we Wz such that $||Aw-y|| \leq ||Ax-y||$ for all $x \in Wz$.

References

- 1. Kim, Ik-Sung, The Studies of III-posed Constrained Minimization Problems in Hilbert Spaces, 연세 대학교 대학원 이학석사 학위논문, 1985.
- 2. Groetsch, C. W, Generalized Inverses of Linear Operators, Dekker, New York, 1977.
- 3. Kantorvich, L. V. Functional Analysis, Pergamon Press, New Yord, 1982.
- 4. Samuel, D. C, Elementary Numerical Analysis, McGraw-Hill, Inc, 1980.