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. Introduction

In author’'s Master thesis[ 1], the concept of generalized inverse and restricted
generalized inverse were introduced. The concept of the restricted generalized inverse
possesses a constrained best approximation property and has applications to certain

constrained minimization problems.
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In this paper, solutions of constrained minimization problem are studied ; Among all
least squares solutions of Lx =z, find an element w which minimizes | Ax-v ||, where X,
Y, Z are Hilbert spaces, A: X—Y, L: X—Z are bounded linear operators and xe X, ye
Y, ze Z.

Especially, as one of the numerical method, the method of steepest descent is used to

. anlayze their approximastion.

2. The Restricted Generalized Inverses of Bounded Linear Operators with Closed

Ranges

The restricted generalized inverse possesses the following constained best approximate

solution property : let ye Y and a=T¢ y. Then

(1) Sa=0.
2) 1 To-yv | < | Tu-y | for all ue N(S).
3) lall < lulfor all ue N(s) such that | Te-y | = | Tu-y ||.

Proposition 1. Let T: X—Y, S: X—Z be two bounded linear operators with closed
ranges, and let ze R(S) and ve Y. Then there exists a unique element tie X satifving the
following conditions.

(1) Sti=z.
(2) | Ta-y ! < | Tu-y |l for all ue {u: Su=z, ue X}.

3) I'al < lul for all such u with | Ta-y | = | Tu-y |
and G=T¢ (y-TS*z)+S*z, where T is the restriction of T onto N(S).
Proof) Since T and S have closed ranges, thus the exixtence is obvious. Now let
Wz={S*z+x: xe N(S)}.
Then since Sti=z thus ie Wz. Let i=S*z+u,, where u,e N(S). Then by condition(2),
FTS z4w)-y I < I TS +x)-y |
for all xe N(S) if and only if
I'T(u)-{y-T(S*2)} | < I T(x)-{y-T(S*2)} |
for all xe N(S). T, has closed range thus y-T(S*;)e D(T,). N amely, u, can be represented
by T*{y-T(S*2)} +P, where Pe N(T)n N(S). But by condition(3), necessarily, 6=S*z+
T*siy-T(S*z)}.
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3. Constrained Minimiztion Problems in Bounded Linear Operators with Arbitrary

Ranges

Let X, Y, Z be three(real or complex) Hilbert spaces, and A: X—Y, L: X—Z are
bounded linear operators and R(L) is closed. We consider the following minimization
problem :

Among all least squares solutions of Lx =z, find an element w which minimizes

| Ax-y 1.

Proposition 2. Let Wz={xe X : x is a least aquares solution of Lx=z, ze Z}. Then we
Wz such that | Aw-y | < I Ax-y | for all xe Wz, where ye Y if and only if A*Aw-A*y
e N(L).
Proof) Since every least squares solution of Lx =z can be represented by L*z+w, where
we N(L), Wz={L*z+w,: w,e N(L)}.

Now, let we Wz such that | Aw-y | < | Ax-y [ for all xe Wz. Then

TAL*z+w,)-y I < | A(L*z+x,)-y |
for all x,e N(L), where w=L*z+w,. It shows that
I AW, -{y-AL*2)} | < | Axy—{y-A(L*Z)} || -oermermrmsemmieinis )

for all x,e N(L). Note that N(L) is a closed subspace of X.

Now, consider the restriction of A onto N(L), denoted by A,.. Since Y= M)+R(AL)‘T
the above condition(l) is equivalent to Aw,-{y-A(L*z)}e R(A,)" Thus for all xe N(L)

(Ax, Aw,-{y-A(L*2)})=90
if and only if
(x, A*Aw,;-A*{y-A(L*2)})=0

for all xe N(L). Namely, A*Aw-A*ye N(L)."

Proposition 3. There exists a unique we Wz if and only if N(A)n N(L)={0}.
Proof) (). Suppose that N(A)a N(L)={0}. Then since N(A_.)={0} thus there exists a
unique w,e N(L) such that | Aw,-{y-{y-A(L*2)}} | < | Ax,-{y-A(L*2)} |l for all x,e
N(L). It shows that there exists a unique w=L*z+w,e Wz such that | Aw-y | € | Ax-y
I for all xe Wz.
(=). Suppose that N(A)n N(L)={0} then there exists at least one w,e N{A)"N(L)
whch is not zero. Thus, | Aw-y | = | A(w+w,)-y || < | Ax-y | for all xe Wz.
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Consequently, w is not unique.

Proposition 4. Let wz={xe X: x is a least squares solution of Lx=z}and let A, be the
restriction of A on N(L). Suppose that y-A(L*z)e D(A% ) and N(A)n N(L)=10}. Then
there exists a unique we Wz such that | Aw-y | | Ax-y | for all xe Wz and w=A"*,ly
-A(L*z)} +L*z

Proof) Since y-A(L*z) ¢ D(A*.), by Proposition 2 and Proposition 3 there exists a
unique we Wz such that | Aw-y || { || Ax-y || for all xe Wz.

Now, suppose that w=w,+L*ze Wz such that | Aw-y | { || Ax-y | for all xe Wz.
Then

I Aw,-{y-AL*2)} | <l Ax,-AL*2)!]|
for all x;e€ N(L). Thus w,=A} {y-A(L*z)}. Consequentoy, w=A{ iy-A(L*z)}+L"z.

Theorem 5. Let XY, Z, be Hilbert spaces and let A: X—Y, L: X—Z be bounded linear
operators, where R(L) is closed. Then the following conditions are equivalent ;
(1) There exists we Wz such that | Aw-y | < | Ax-y || for all xe Wz, where ye Y.
2) A* Aw-A*ve N(L)’
(3) y-A(L*z)e D(A*_), where A, is the restriction of A on N(L).

Proof) By Proposition 2 and 4, the proof is so easy.

Thoerem 6. Let X,Y and Z be Hilbert spaces, and A: X—Z, L : X—Z be bounded linear
operators, where R(L) is closed. Suppose that N(L)n N(A)=!0} and R(A) is closed, then
for all ye Y and ze Z there exists a unique we Wz such that

I Aw-y | < I Ax-y |
for all xe Wz, where Wz={xe X: x is a least squares solution of Lx=z}.

Proof) By assumption, since R(A,) is closed thus for all ye Y, y-A(L*z)e D(A*,) and by
Proposition 4 there exists a unique we Wz such that | Aw-y | < | Ax—vy | for all xe
Wz,

Theorem 7. Let N(L)AN(A)=1{0} and let R(A,) be closed and suppose that (x,) is a
sequence of approximations which converges to L*z, then we can find an approximation
%X of w which | w-X | <& for arbitrary ¢ > 0, where we Wz such that | Aw-y || for all

xe Wz,
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Proof) By assumption, A, has a closed range. It shows that A*, is bounded. Since x,

converges to L*z, for arbitrary ¢ >0 we can take x, such that

I L*z-x, | <min (m, ;)
Since y-A(x.)e D(A*,), let x=A*_{y-A(x,)} +X,, then
Fw-% I < I A*{AL*z-x,)} | + | L¥z-x, |
LITA* I Al Lz+Lz—x
<e.
Namely,

ITw-x§ <(FA*L T 1AT+1) 1 Lrz-x, 1.

As an application, we consider an example by using of steepest descent method.
Proposition 8 The sequence (x,) converges to L*z, where X,.; =Xn-anr'n, ra=L*Lx-L*

z, a,= | ra 12/ Lra [ . Its speed of convergence is given by the inequality

I xwLizl <C (2] (0=0,1,2-:C= )

Proof) Since R(L) is closed, Lz exists for all ze Z. This method is steepest descent
method and the convergence is obvious. For the detail proof, see Kantovich(3, p. 446]
Example. Among Wz={xe X: is a least squares solution of Lx =z}, we consider the
problem of researching an approximation X of we Wz such that | Aw-y | { | Ax-y |l for
all xe Wz. Let N(A) and N(L) be non-trivial subspaces and N(A)A N(L)={0} and R(A,)
is closed.

[STEP 1] Take an initial approximation xe N(L), and X,.,=X,-a,r, where r,=L*

Lx,-L*z,a,={r, 112/ Lr, | 2. Then by Proposition 8

. (M-mY
| L*z-x, I £C M+ m)
where C is a constant and M, m such that m || x [| 2<(L*Lx, x)<M || x | 2 for all xe N(L).

(see Groetsch[2] or Kantorvich[3])
[STEP 2] Let §=y-A(Xx), Yn+1=Yn"@nln, Tn=A%ALy-A*§, a,= [ 1, | ?/ | Airs |l 2.
e lyp-angl < b leey el

IALI® |zo-y" P+Ples |
where y*=Prau¥, A*LZo=Yo, eo=yo—A*L)‘7.(see Groetsch [2])
[STEP 3] Take x=y,+x4. Then

Iw-x I <ex+(IA*CH 1Al +1De..
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where ) . \
o= A 120y leo | .
" lAkzey " P e, |

(M-m)
{ M+m)

&€= C

we Wz such that | Aw-y | < | Ax-y | for all xe Wz,
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