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1. Introduction

Suppose that H, and H, are Hilbert spaces over the same scalar fields.
We consider a linear equation of the type
Tx=b where be H;, Te L(H,, H,) - 1
If T has an inverse then equation (1) always has the unique solution x="T"'b.
Moreover. (1) may have more than one solution (If N(T)+{0})
or may have no solution at all(If b¢ R(T)).
Even if the equation (1) has no solution in the traditional sense it is still possible to assign

what is in a sense a best possible solution to problem. It seems reasonable the consider
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a generalized solution of (1).

In this paper, first, we introduce the concept of generalized inverse and restricted
generalized inverse.
Minamide and Nakamura introduced recently the concept of the restricted generalized
inverse which possesses a constrained best approximation property and which has
. applications to certain constrained minimization problems.

In the second part, we will investigate the solution of following minimization problem ;

Let A: X—Y, L: X—Z be linear operators where X, Y, Z are Hilbert spaces and L has
a closed range

Find we G,={ue x: | Au-y || =inf | Ax-y || } such that

[ Lw ] =inf{ | Lu| : ue G;} where xe X, ye Y.

2 . Preliminaries

1) Generalized inverses of linear operators on Hilber spaces.

Let X and Y be Hilbert spaces. Let T: X—Y be a linear operator. We denote the range

of by R(T), the null space of T by N(T) and the adjoint of T by T*. For any subspace S
of a Hilbert space H we denotes the orthogonal complement of S by S? and the closure
of SbyS.
Now, consider an operator equation of the first kind :
Tx=y, where xe X, ye Y. (1.1)
Definition 1.1: For a given ye Y, an element ue X is called a least squares solution of
(1.1) if and only if | Tu-y | < Il Tx-y | for all xe X.

Definition 1.2: An element i is called a least squares solution of minimal norm of(1.1)
if and only if G is a least squares solution of(1.1) and | i | L full for all least squares

solutions u of(1.1).

Definition 1.3: The generalized inverse of T, denoted by T*, defined by T*y=1i. where

1 is the least squares solution of minimal norm of Tx=y.

If T is continuous, then N(T) is closed. The adjoint T* is also bounded and the following

relations are valid ;

- 168 -



Restricted Generalized Inverse & M¥™ A48 FAd L4 FY a7 3

R(T)=N(T*)", R(T)*=N(T*)
R(T*)=N(T)*, R(T*)*=N(T)
(See Groetsch [1, pl4]).

Let T :X—Y be a bounded linear operator and let P be the projection of Y onto Iﬁ then
we can easily check that the following conditions on ue X are equivalent ;
(1) Tu=Py
2 I Tu-y Il < I Tx-y Il for all xe X
(3) T* Tu=T*y where ye Y
(See Groetch {1, pl14])
In other word, ue X is a least squares solution of the equation Tx=y if and only if u
satisfies the equivalent conditions (1)-(3).
We can easily prove that the following statements are true.
(1) If u is a least squares solution of Tx=y then u+x is also least
squares solution of Tx =y, where xe N(T).
(2) If u is a least squares solution of Tx=y and u=x, +x,
where x,€ N(T), x,e N(T), then x,=T"y.

(3) For all least squares solution u, u=T*y+x,, where x;e N(T).

2) The restricted generalized inverses of bounded linear operators with closed

ranges.

Let X, Y and Z be Hilbert spaces over the same scalar fields, and let T: X—Y,S: X—
Z be bounded linear operators with closed ranges.

Consider the Product transformation (T, S) on X into Y XZ defined by (T, S) u=(Tu,
Su), where Y X Z is the product Hilbert space equipped with the usual inner product.

Assume that the transformation (T, S) has a closed range in Y XZ.

Since S is continuous, the null space N(S) is a closed subspace of X.

Denote the restriction of T onto N(S) by Ts.

Since T is a bounded linear operator with closed range.

Ts: N(S)—Y has also a closed range in Y.

So, for all ye Y, there exists a unique T¢y.
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3. Constrained minimization problems.

Let X, Y, Z be three Hilbert spaces and A: X—Y, L: X—Z are bounded linear
operators and R(L) is closed.
"We consider the following minimization problem ;
Let Gy={ue X: | Au-y |l =inf | Ax-y I, xe X} where ye Y. Find we G, such that |
Lw ll =inf {Lul : ue G,}.

Lemma 2.1 Gy is a non-empty closed convex subset of X and ue G, if and only if u=
A*y+(I-A*A)v for some ve X.

proof) For all ue Gy, u can be represented by u=A*y+u, where u,e N(T)
i.e.Gy={A* y+u,: uy,e N(T)}

Since N(T) is a closed convex subset of X, G, is also a non-empty closed convex subset
of X.

(=) Suppose that u=A*y+u, where u,e N(T).

Then u, =(I-A*A)u,. Thus let v=u, then u=A*y+(I-A*A)v
(=) Let u=u, +u, where u,e N(T)*, u,e N(T).

Then (I-A*A)Ju=u, +u,-u, =u,e N(T).

Thus A*y+u,e G,.

Proposition 2.2. | Lw! =! Lu' : ue Gy} if and only if A*Aw=A*"'y and L*Lwe
NA)*

Proof) Let we G, which satisfies |Lw | ={]Lul : ue G,}. Then A* Aw=A'v is
obvious.
For all ue Gy, u can be represented by u=A*y+u,, where u, € N(A), and denotes w=A*
y+w,, where w,e N(A).

Since || Lw | =inf { | Lu | : ue G,}, | L(A*y+w,) | <L(A*,+4u,) | for all u e N(A)
Le [LA*y)+Lw) I < Il LA*y)+L(u,) | for all u;e N(A) —(1)

Now consider the restriction of L onto N(A), denoted by L,

Then (1) induces that || Ly(w,)+L(A*y) | < | La(u;)+L(A*y) | for all u e N(A).

Since L has a closed range, L, has also a closed range.
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It shows that w; =L} (-L(A*y). Consequently
La(w))+L(A*y)=L(w, +A*y)e R(L)"

Thus for all u;e N(A), L,(u,)e R(L,) and

(La(u), La(w,)+L(A*y))=(La(wy), L(A*y +w.))

=(L(w,), L(w,; +A*y))=(u,, L*L(w, + A*y))=(u;, L*L{w))=0.
Namely, L*L(w)e N(A)*

Proposition 2.3. we G, which satisfies | Lw | =inf { | Lull : ue G,} is unique if and
only if N(AYNN(L)={0}
proof) (=) Suppose that N(A)N N(L)# {0}

Then there exists at least one w,e N(A)N N(L) which is not zero.

Thus | Aw-y | = | A(w+w,)-y | < | Ax-y | for all xe X. Consequently w+w, also
belongs to Gy and | Liw+w;) | = | L(w) | =inf { | Lul : ue Gy}

(¢) Suppose that N(A)N N(L)={0}
Then N(L,)={0} and since | Lw | =inf{ | Lull : ue Gy} implies that

I L(A*y+w;) | =inf{ | L(A*y+w,) | : w,e N(A)}

I LA*Y +w;) | = || Liw,)+L(A*y) | =inf{ | L(w,)+L(A*y) | : w,e N(A)}
where w=A*y+w,

Consequently, we can represent w, as L*,(-L(A*y))+p, where pe N(L,). But since

N(L,)={0}, w, is unique.

Theorem 24. Let Gy={ue X: | Au-y | =inf | Ax-y |, xe X} and N(A)NAN(L)=1{0},
Then there exists a unique we G, such that

lLwll =inf{ | Lull : ve Gy} and w=A*y+L*,{-L(A*y}

proof) Since ue G, is denoted by u=A*y+u,, where u,e N(A).

Let w=A*y+w, where w,e N(A).

Then || Lw || = | Liw,)+ L(A*y) | <inf{ | Lu | : ue G,}

=inf{ | L(u,)+L(A*y) | : uje N(A)}

Since L has a closed range L*y always exists for all ye Z

Thus by Proposition 2.2, 2.3 the unique we G, which | Lw | =inf{ | Lu : ue Gy}

exists.
Now, | Liw,)+L(A*y) | <L(u;)+L(A*y) for all u;e N(A) implies that

-171 -



6 FYEHF 5%(1988. 12)

I Laiwi)+L(A*Y) | =inf{ § Lyu)+L(A*y) | : u;e N(A)}

In result, u; is a least squares solution of the equation L,x+L(A*y)=0 and by
uniqueness, u, itself is the least squares solution of minimal norm.

Thus w,=L*,(-L(A*y)) and w=A*y+L*,(-L(A*y)).
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