Weighted U-statistics for Simple Linear Regression

Kim Do-hyun, Kim Chul-soo*

단순한 선형회귀에 대한 무게있는 U-통계량

金道鉉 , 金鐵洙*

1. Introduction

Consider an arbitrary kernel $h(x_1, \dots, x_n)$, not necessarily symmetric, to be applied as usual to observations X_1, \dots, X_n taken m at a time. Suppose also that each term $h(X_{i1}, \dots, X_{im})$ becomes weighted by a factor $w(i_1, \dots, i_m)$ depending only on the indices i_1, \dots, i_m . In this case the U-statistics sum takes the more general form $T_n = w(i_1, \dots, i_m)h(X_{i1}, \dots, X_{im})$. In this case that h is symmetric and the weights $w(i_i, \dots, i_m)$ take only O or I as values. Certain "weighted U-statistics" for simple linear regression take the form T_m .

Consider the simple linear regression model

 $\mathbf{Y}_i = \boldsymbol{\alpha} + \boldsymbol{\beta} \mathbf{x}_i + \mathbf{e}_i, \quad \mathbf{l} \leq \mathbf{i} \leq \mathbf{n}, \quad (1, 1)$

where α and β are unknown parameters, x_i are known regression scores, and e_i are i. i. d. random variables with c. d. f. F.

In this paper we extend the procedures of Theil by using the projection of weighted U-statistic of the form weighted rank for the simple linear regression model (1.1).

2. A weighted U-statistics

For the regression model (1.1), assume that F is continuous to rule out ties among the Y is. Also assume that $x_1 < x_2 < \dots < x_n$ with at least one strict inequality. We will consider inferences for based on weighted U-statistics defined by

 $\mathbf{T}_{if} = \sum_{i=1}^{n-1} \sum_{i=1}^{n} \sum_{i=1}^{n-1} \mathbf{x}_{i} \, \boldsymbol{\phi} \, (\mathbf{Y}_{i} - \boldsymbol{\alpha} - \boldsymbol{\beta} \, \mathbf{x}_{i}, \ \mathbf{Y} - \boldsymbol{\alpha} - \boldsymbol{\beta} \, \mathbf{x}_{i}),$ where $\boldsymbol{\phi}(\mathbf{u}, \mathbf{v}) = 1$ or 0 according as $\mathbf{u} \langle \mathbf{u} | \mathbf{v} - \mathbf{u} \rangle \mathbf{v}$

The weights $a_0 > 0$ are arbitrary but assume that $a_{ij} = 0$ if x = x. We define the slope of the line segment from the point(x_i, Y_i) to the point (x , Y) by

 $S_{ii} = (Y - Y_i) | (x_i + x_i), \quad i \in j, \quad x_i \neq x_i$

- Note: 1 T_{ij} is a function of the slope S_i , since $\mathbf{\phi} (Y_i - \mathbf{a} - \beta \mathbf{x}_i, -Y_j - \mathbf{a} - \beta \mathbf{x}_j) = 1$ when $S_{ij} \ge \beta$.
 - The distribution of T_d depends on the weights a_{in}
 - If a_i = 1, the wilcoxon distribution can be applied.

But it is not generally feasible to tabulate the exact distribution for smaller sample sizes. For larger sample sizes, the distribution of $T_{\mathcal{J}}$ can be approximated by a normal distribution.

2.1. An estimator associated with the Theil

師範大學專任講師,延世大學校 講師*

statistic to estimate β of model (1.1).

- a) Let $N = \binom{n}{2}$ and form the N sample slope $S_{ij} = (Y_j Y_i)/(x_j x_i), i \le j, x_i \ne x_j$
- b) The estimator of β is

 $\hat{\boldsymbol{\beta}} = \text{median} |\mathbf{S}_{ij}|$

Let $S^{(1)}(S^{(2)}(\cdots \otimes S^{(N)})$ denote the ordered values of S_{10}

Then if N is odd, say N=2k+1, we have $\hat{\beta} = S^{(k+1)}$.

If N is even, say N = 2k, then

$$\hat{\boldsymbol{\beta}} = \frac{\mathbf{S}^{(k)}}{2} + \frac{\mathbf{S}^{(k+1)}}{2}$$

The estimator $\hat{\beta}$ is less sensitive to gross errors than is the classical least-square estimator.

Sen has generalized Theill's estimator to the case where the x's are not distinct.

2.2. Estimation for β by T_{β}

Consider the estimator $\hat{\beta}$ of the slope parameter defined by

$$\hat{\boldsymbol{\beta}}_{\mathrm{L}} = \sup |\boldsymbol{\beta} : \mathbf{T}_{\boldsymbol{\beta}} \geq \frac{\mathbf{a} \cdots}{2} |,$$
$$\hat{\boldsymbol{\beta}}_{\mathrm{L}} = \inf |\boldsymbol{\beta} : \mathbf{T}_{\boldsymbol{\beta}} \leq \frac{\mathbf{a} \cdots}{2} |,$$

and $\hat{\beta} = (\hat{\beta}_{u} + \hat{\beta}_{L})/2$, where

$$a{\cdots}=\sum_{i=1}^n\sum_{1=i+1}^n\sum_{j=1}^n a_{ij}.$$

Note. T_{β} is a nonincreasing, left-continuous function of that ranges from a... down to zero. It is a step function with jumps a_{ij} occurring at the point S_{ij} .

Consider the asymptotic distribution of T_{β} . The distribution of T_{β} when the slope parameter is β is the same as the distribution of T_0 when $\beta = 0$. Now T_0 is a function of the ranks of the Y's and the basic approach is to consider the projection of T_0 , say T_0^* , into the family of linear rank statistics and to establish that T_0 and T_0^* have the same asymptotic distributions.

Define the row and column sums of the weights by

$$\begin{aligned} \mathbf{a}_{i} &= \sum_{j=i+1}^{n} \mathbf{a}_{ij} \\ \text{and} \\ \mathbf{a}_{\cdot j} &= \sum_{i=1}^{i-1} \mathbf{a}_{ij} \text{ for } 1 \leq i, j \leq n \\ \text{with } \mathbf{a}_{n} &= 0 \text{ and } \mathbf{a}_{1} = 0. \text{ Let } \mathbf{A}_{i} = \mathbf{a}_{i} - \mathbf{a}_{i} \text{ and} \\ \mathbf{a}^{\dots} &= \sum_{i=1}^{n} \sum_{j=i+1}^{i-n} \mathbf{a}_{ij}. \end{aligned}$$

From the Haiek and Šidák, the projection of

From the Hájek and Šidák, the projection of T_0 is

$$T_{0}^{*} = (1/n) \sum_{i=1}^{n} A_{i}R_{i} + a \cdots / 2,$$

where R_i is the rank of Y_i among $|Y_1 \cdots Y_n|$, $1 \leq i \leq n$. That is, this can be verified by the following lemma and theorem.

Lemma(Hájek). Let Z_1, \dots, Z_n be independent random variables and $S = S(Z_1, \dots, Z_n)$ any statistic satisfying $E(S^2)$. Then the random variable

 $\hat{S} = \sum_{i=1}^{n_i} E(S | Z_i) - (n-1)E(S)$ satisfies

 $E(\hat{S}) = E(S)$

and

 $E(\hat{S}-S)^2 = Var(S) - Var(\hat{S}).$

The random variable \hat{S} is called the projection of S.

It is also possible to apply the technique to project a statistic onto dependent random variables.

Theorem. Consider a rank statistic $T = T(R_1, \dots, R_N)$ and put

 $\hat{a}(i, j) = E(T R_i = j), 1 \langle i, j \rangle \langle N.$

Then the statistic

$$\hat{T} = \frac{N-1}{N} \sum_{i=1}^{N} \hat{a}(i, R_i) - (N-2)E(T)$$

is the projection of T into the family of linear rank statistics.

Proof. See Hajek, p. 59.

The following two theorems are immediate from

Hâjek and Šidák(1967, p. 163).

Theorem 1: Assume $\beta = 0$ and the condition

$$A: \sum_{i=-1}^m A_i^{-2} / \max_{i=1 \le i \le n} A_{-i}^2 \to 0 \text{ as } n \to \infty.$$

Then T_0^* is asymptotically N(a···/2, $\sum_{i=1}^{n} A_i^2/12$). Theorem 2: Assume $\beta = 0$, condition A, and condition

 $\begin{array}{c} B: \sum_{j \in [1,n]} a^2 \sqrt{\sum_{i=1}^n} A^2 \rightarrow 0 \ \text{as} \ n \rightarrow \infty. \end{array}$ Then T_0 is asymptotically $N(a \cdots /2, \sum_{i=1}^n A^2 / 12).$ The exact variance of T_0 is

$$(\sum_{i=1}^{n} A_{i}^{2} + \sum_{i=1}^{n+1} \sum_{j=i+1}^{m} a_{ij}^{2})/12,$$

Now the standard test of $\beta = 0$ of the model (1.1) is introduced. This is based on $\sum_{i=1}^{n} (x_i - x)Y_i$. This suggests a rank statistic

 $U = \sum_{i=1}^{n} (x_i - \bar{x}) R_i$

where R_1, \dots, R_n are the ranks of Y_1, \dots, Y_n .

Under $\beta = 0$, Y_1, \dots, Y_n are i. i. d. random variables with c. d. f. $F(y-\alpha)$, we obtain the following theorem.

Theorem 3: In the simple regression model (1.1), suppose $\beta = 0$ and suppose that

$$(1/n) \sum_{n=1}^{n} (\mathbf{x}_{n} - \mathbf{x})^{2} \rightarrow \delta^{2} \rangle \mathbf{0}$$

Then

 $U^{\bullet} = \frac{1}{(n+1)\sqrt{n}} \sum_{i=1}^{n} (x_i - \hat{x})(R_i - (n+1)/2) \text{ is}$ asymptotically N(0, $\delta^2/12$).

Proof. First, note that the rank of Y_1 among Y_1 , ..., Y_n can be written as

$$R_{j} = 1 + \sum_{i=1}^{n} s(Y_{j} - Y_{i}).$$

where s(x)=1 if x>0 and 0 otherwise. Then, since

$$E[s(Y_j-Y_i) | Y_k=y] = \begin{cases} F(y) & k=j \\ 1-F(y) & K=i \\ 1/2 & k \neq i \text{ or } j, \end{cases}$$

ve have

$$E[R_{j} | Y_{k}=y] = 1 + \sum_{i=1}^{n} E[s(Y_{j}-Y_{i}) | Y_{k}=y]$$

=
$$\begin{cases} 1 + (n-1)F(y) & k=j \\ 1 + (n-2)/2 + (1-F(y)) & k \neq j \end{cases}$$

And we have

$$E[U^* | Y_k = y] = \frac{1}{(n+1)\sqrt{n}} \{ \sum_{\substack{j \neq k} (x_j - \bar{x}) [1/2 - F(y)] + (x_K - \bar{x}) [(n-1)F(y) - (n-1)/2] } \}$$

$$=\frac{\sqrt{n}}{(n+1)}(\mathbf{x}_{\mathrm{K}}-\mathbf{x}[\mathbf{F}(\mathbf{y})-1/2]]$$

Hence the projection V_p of U^* is

$$V_{p} = \frac{\sqrt{n}}{(n+1)} \sum_{k=1}^{n} (x_{k} - \bar{x}) [F(y_{k}) - 1/2]$$

Since $F(y_k)$ has a uniform distribution on (0, 1) with mean 1/2 and variance 1/12, we have

Var
$$V_p = \frac{n}{12(n+1)^2} \sum_{k=1}^{n} (x_k - \bar{x})^2 \rightarrow \frac{1}{12} \delta^2$$

Hence Var $U^* \rightarrow \delta^2/12$, so $E(U^* - V_p)^2 \rightarrow 0$. Thus, U^* and V_p have the same distribution. That is, $V_p(and hence U^*)$ is asymptotically N(0, $\delta^2/12$).

3. Confidence intervals for β

3.1. Confidence interval based on the Theil test.

For a symmetric two-sided confidence interval for β with confidence coefficient $1-\alpha$,

a) Determine the constant C_a that satisfies the equation

$$P_0 \left| -C_{\alpha} \langle C \langle C_{\alpha} \rangle \right| = 1 - \alpha$$

Note that $C_{\alpha} + 2 = k((\alpha/2), n)$

- 97 -

This values were evaluated from the Kendall's K-statistic.

b) Obtain the ordered values $S^{(1)}(\cdots \in S^{(N)}$ if the $N = (\frac{n}{2})$ sample slopes $S_{i1} = (Y_1 - Y_1)/(x_1 - x_1)$.

c) Set
$$M_1 = \frac{N - C_a}{2}$$
 and $M_2 = \frac{N + C_a}{2}$.

d) The 1- α confidence interval $(\beta_{1,\cdot}, \beta_{1,\cdot})$ is defined by $\beta_{1,\cdot} = S^{(M_1)}$ and $\beta_{1,\cdot} = {}^{(M_2+1)}$ Hence we have $P_{\beta_1} + \beta_{1,\cdot} < \beta < \beta_{1,\cdot} = 1 - \alpha$.

3.2. Confidence interval based on T_{β}

Consider the simple linear regression model (1.1) and the test of H_0 : $\beta = 0$ against H_1 : $\beta > 0$, where the test is based on the statistic $T_{\beta 0}$. From the theorem 2, the test which rejects H_0 if $T_{\beta 0}>(a\cdots/2)+z_{\alpha}(\sum_{i=1}^{n} A_{ii}^2/12)^{1/2}$ is an approximate level α test, where z_{α} is the quantile of order $1-\alpha$ for the standard normal distribution.

A confidence interval for β can be obtained by inverting the two-sided alternatives.

Let H(s) denote the cumulative distribution function of the discrete probability which assigns probability $\mathbf{a}_{12}/\mathbf{a}_{11}$ to the points S_{12} . Let $H^{-1}(\mathbf{u}) =$ inf $|\mathbf{s}: \mathbf{H}(\mathbf{s}) \geq \mathbf{u}|_{1}$. Suppose that \mathbf{t}_{1} and \mathbf{t}_{2} satisfy \mathbf{P}_{12} $(\mathbf{t}_{1} \leq \mathbf{T}_{12} \langle \mathbf{t}_{2}) = \mathbf{1} + \boldsymbol{\alpha}$. We note that $\mathbf{P}(\mathbf{T}_{1} \langle \mathbf{a}_{11} \rangle \langle \mathbf{I}_{2} \rangle \langle \mathbf{P}(\hat{\boldsymbol{\beta}} \langle \mathbf{t}_{2}) | \mathbf{P}(\hat{\boldsymbol{T}}_{1} \langle \mathbf{a}_{11} \rangle \langle \mathbf{I}_{2} \rangle \langle \mathbf{I}_{2} | \mathbf{I}_{2} \rangle \langle \mathbf{I}_{2} | \mathbf{I}_{2} \rangle$ equivalent to the event $||\mathbf{H}^{-1}(\mathbf{t}_{1}) \in \boldsymbol{\beta} \langle \mathbf{H}^{-1}(\mathbf{t}_{2})|$, the interval $(\mathbf{H}^{-1}(\mathbf{t}_{1}), \mathbf{H}^{-1}(\mathbf{t}_{2}))$ is a $(1 - \boldsymbol{\alpha})$ 100 percent confidence interval for $\boldsymbol{\beta}$. By theorem 2, we

Adichie, J. N., 1967. Estimates of regression parameters based on rank test. A. M. S. 38; 894– 904.

Jarosiav Håjek and Zbynek Šidák, 1967. Theory of rank test. Academic press. New York. pp. 56-165.

¹ ehmann, E. L., 1975. Nonparametric statistical method based on ranks. McGraw-Hill, New York., pp. 82-93. determine the constants t_1 and t_2 . An approximate $(1-\alpha)$ 100 percent confidence interval for β .

$$(\mathrm{H}^{-1}((1/2) - Z\alpha/2)(-\sum_{i=1}^{n} A_{i}^{2}/12)^{1/2i}/a\cdots).$$
$$(\mathrm{H}^{-1}((1/2) - Z\alpha/2)(-\sum_{i=1}^{n} A_{i}^{2}/12)^{\frac{1}{2}}/a\cdots)).$$

4. Conclusion

A natural estimate of β based on Theil statistic was the median of the pairwise slopes. Now various weights a_{ij} are introduced.

 a) Let the weights be given by a_{ij}=1, i ≤j, if x_i ≠x_i: otherwise let a_{ij}=0.

If the x_i 's are all distinct, then $A_i=2i-(n+1)$, $a\cdots = n(n-1)/2$, and conditions A and B hold.

- b) Let $a_{i} = j-i$, i < j, if $x_i \neq x_j$; otherwise 0.
- c) Let $\mathbf{a}_i = \mathbf{x}_i \mathbf{x}_i$, $i \leq j$. Then $\mathbf{A}_i = \mathbf{n}(\mathbf{x}_i \mathbf{x})$ and $\mathbf{T}_{\mathbf{\beta}}$ is asymptotically normal with mean $\sum_{i=1}^{n} \sum_{j=1}^{n} (\mathbf{x}_i - \mathbf{x}_i)^2/12$.

Another weight a_{ij} can be given by $a_{ij}=(x_j-x_i)/((j-i))$, i < j, but this weight a_{ij} does not have a simple representation in evaluating T.

If the above weights are considered in view of the efficiency considerations, the weight $a_{ij}=x_j-x_i$ is recommended.

That is, the weight $a_{ij}=x_j-x_i$ merits serious considerration as an alternative to the classical estimate.

Literature cited

- Myles Hoiiander and D. A. Wolfe, 1973. Nonparametric ststistical methods, John Willey & SONS pp. 67-75.
- Pranab Kumar Sen. 1981. Sequential nonparametrics, John Willey & SONS. pp. 86-90.
- Randles R. H. and Wolfe D. A. 1979. Introduction to the theory of nonparametric statistics. John Willey & SONS. pp.103-113.

- 98 -

Weighted U-statistis for Simple Linear Regression 5

국 문 초 록

· 순위 점성 통계량의 형태인 무게있는 U-통계량을 사용해서 난순 회귀 모형에 대한 Theil의 점성을 실려 보며 회귀제수권에 대한 전뢰구간을 추성한다.