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Paramagnetism of Aharonov-Bohm
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Summary

Following recent works on the Aharonov-Bohm (AB) response of canonical ensembles, we obtain the

exact expression of the persistent current in a mesoscopic metallic ring and evaluate the disorder-

averaged orbital paramagnetic susceptibility of an isolated metallic disk. As in the AB case, we find

that lm~IZLI(£t/max{2nI 7)) in two dimensions. This is larger than the disorder-averaged

diamagnetic susceptibility of a grand canonical ensemble, Xz~ X;, up to the characteristic flux, #.~¢:

(E, /max (22T 7)), In stronger fields $.<#<#,/2, the magnetic susceptibility of the direct response

reduces to the value of order 2

Introduction

The transport properties of submicron-size
metallic samples at low temperature have been
shown to exhibit features of the quantum
coherence of the electron wave function along
the whole sample. For such ‘mesoscopic”
systems (Spivak and Zyuzin, 1991), some mag-
like Aharonov-Bohm
(AB) oscillation in the resistance (Stone and

Imry, 1986: Aronov and Sharvin, 1987) and the

netic field-related effects,

persistent current of a narrow ring (Biittiker @
al, 1983) pierced by the magnetic field, have
been received considerable consideration. After
the first experimental evidence (Levy et al, 1990;
Chandrasekar e al, 1991) for existance of the
persistent current was reported, there have been
a lot of theoretical attempts (Ambegaokar and
1990; Schumid, 1991: Altshuler et al,
1991; Efetov, 1991: Kopietz, 1992) to analyze the
experiment of Levy e ol Schmid, Altshuler,
Gefen and Imry have shown that in a canonical

Eckern,

ensemble the persistent Aharonov-Bohm (AB)
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currents have, on the average, the paramagnetic
sign at zero temperature. This phenomenon has
been attributed to correlations of energy levels in
a disordered metal (Altshuler and Shklovskii,
1986) and the underlying physical picture can be
Whereas a standard

derivation of the response function assumes fixed

summarized as follows.

chemical potential, it is only appropriate for the
circumstance of a conductor connected to the
electron reservoirs with the well-defined chemical
potentials. However, this is not the typical case
for the magnetic response, in which a sample is
usually isolated from the electron reservoir, The
difference between the grand canonical and
canonical ensembles is that in the latter the total
number of electrons in the system remains
constant, while in the former the electron closest
to the Fermi level can leave or enter the sample
once its energy crosses the chemical potential
with the change of the magnetic flux through the
hole of the ring (AB flux). Therefore, AB cur-
rent is a single level current and has the same
(paramagnetic) sign for the levels crossing the
chemical potential from above and below since
those levels have slopes of the opposite signs as
a function of the AB flux (Trivedi and Browne,
1988).
mesoscopic aspects of magnetic response of a

The aim of this paper is to present the

small metallic systems with normal impurities; we
do not consider the effects of magnetic
impurities, such as spin—flip and spin—orbital
scattering. We derive an exact expression of the
AB current of the mesoscopic metallic ring with
finite temperature and expand the methods of
Schmid (1991) and Altshuler ef af, (1991) to the
direct magnetic
ensemble, that
through the metal, and compare it to the AB

response. The size of the sample L is assumed to

response of a canonical

is the response to the flux

be the circumference of the two dimensional ring
for the AB response and of the two dimensional

F=n-

disk for the direct response, respectively. For a
ring or a disk of thickness a{l, the expressions
for the magnetic moment and susceptibility have
an extra factor of (k™ where kis the fermi
wave number, We also assume that the inelastic
level broadening 7, and energy associated with
temperature are larger than the average interlevel
being N(0)

the single-particle density of states at the Fermi

spacing of a sample A=(N(0) V)",

level and V the volume (area) of the sample.
This
sequence, In Chapter,
derivation of Schmid and Altshuler et al, The
novel of our analysis is the exact expression for

paper is organized in the following

I, we briefly outline the

the persistent current, In Chapter M, we derive
the expression for the average paramagnetic
susceptibility and the correlation function of the
chemical potential of an isolated metallic disk and
establish the complete analogy between the AB
(flux-periodic) and the zero mode forms of the
Cooper propagator (Cooperon). In conclusion,
we outline the magnetic moment and sus-
ceptibility for the AB and direct responses and
discuss the similarity and difference of both

cases,

Aharonov-Bohm Response

We begin with the derivation of the

paramagnetic component of the AB (persistent)

current in a narrow ring. It was shown that the
average free energy F of the canonical ensemble
can be expressed in terms of the average free
energy (I of the identically prepared grand

canonical ensemble as

120
2 5 ¢

(oD = a-% AED.

Here {u) is the average chemical potential of
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the canonical ensemble, which is also the true
chemical potential of the corresponding grand
o) D =) is its

average variance. The latter can be rewritten as

canonical ensemble,

&) >=(ND))*

dg, de
4ag) d&,
[ (2595 (ve) M e fled. )

where f (€} is the fermi distribution function and
the correlation function of the density of states is
given by (Altshuler and Shklovskii, 1986)

(N (&) Me)>=

Z%V’%: Re(-i(e,-&) +7+ Da*) ™ &
In Eq. (3) s Dare the spin degrees of freedom
and the diffusion coefficient, respectively and gis
the momentum of the Cooperon. In a thin ring
the transverse momenta can be omitted while the
longitudinal momentum can be expressed in terms

of the circumference of the ring as

@)= (/0 ("+2¢M/¢o)' @

where n is any integer and ¢, is the flux
quantum. Such dependence on the flux is in-
the diffusion
propergator, on the other hand, does not depend

herent to the Cooperon:
on the flux and is omitted here. Combining Egs.
(1)-(4), we obtain

F-n=%g S de) fley) ..én

Re((e-&) +ir+ in’Er(ﬁ%B-]-Z' )

where E=AD/I’, being much larger than max {2
xT,r), is the maximal energy for the occurance
Two observations
First, the right-

diverges at zero flux.

of the quantum coherence.
should be made about Eq. (5).
hand side (r.h.s.)
However, we are concerned only with the mag-

netic part of the free energy and hence will
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neglect the divergent part as an irrelevant
constant. Second, the r.h.s. is clearly periodic
with the period of the half the flux quantum. One
the AB current

thermodynamics (Byers and Yang, 1961), putting

can calculate from the

=1

1@ =-25
29 6)

Converting the integral into a Matsubara sum
and then evaluating the sum over nfirst with the

identity :

o

1 sinh2xb
RENCTIEYy

n
b cosh2rb-coszra )

the following expression for the persistent

current is given

= 281 e . 4“¢AB
1 @n)* fi sin ( e )

[ 2nT asinha +
22 T+7 {cosha-cos (4zd,5/8:) }®

1
cosha—cos (4n8 g/ Bs) ] ’ 8

where a=./(2nT4+7)/4E, . In the linear re-

sponse approximation, 2¢,4< ¢, the limits of Eq.
(8) are as follows :

(3s* eA Ec 2¢a8_3¢* eA
2° & 2aT ¢, 20° h
B E, 2%
I~ 4 T de , E2aT)r @)
s eA Ec 28 _ ' en
Zﬂ. h r [N 2”, h
E. 26an
\4/7 G2 BT

When max {22T, r} <A, the quantity of order A
should be substitnted for2+T and 7 in the above
1991).
characteristic energy scale associated with the

equations (Altshuler e al, Since the

last level is~A, one finds I~A/g, for the max-
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imal total current. In the same fashion, using X
oc A/¢?, the AB susceptibility is estimated as 2
~ x| (E./max {2T, 7)) <1X | (E A) where X =-
(1/3) e NO) is
susceptibility and pg the Bohr magneton (the

the Landau diamagnetic

exact prefactor can be derived with the help of
Eq. 8))).

Direct Response

We now turn to the evaluation of the response
of an isolated disk of radius L/2r. First, we
consider a two-dimensional situation and then
generalize it to a slab of thickness a{L/2x. We
first concentrate on the contribution of the zero
mode-the lowest eigenvalue solution for the
Cooperon (Serota et al, 1987). In the absence of
magnetic field, the zero mode of the Cooperon is
a constant in space oc (-i{e,~&) +7)', whose
derivative at the boundary is zero indicating the
absence of electronic flux in and out of the
sample. In a weak field, the zero eigenvalue is
shifted by a small amount which can be
evaluated perturbatively. The perturbation theory
here (Oh e o, 1991)
traditional stationary state perturbation theory

is different from the

due to boundary condition of zero covariant
derivative (Spivak and Khmelnitskii, 1982). The
latter condition does not allow the usual ex-
pansion of the first-order correction to the
eigenstste in terms of the unperturbed

eigenstates, Also, in integrations by parts, one
can not neglect the surface terms giving extra
The result is

that the first-order correction to the lowest

contributions to the eigenvalues.

eigenstate is zero, which should be expected on
the basis of time-reversal symmetry argument.
The second-order magnetic correction can be
expressed in terms of volume integral of the

square of the vector potential in a gauge where

the vector potential is tangential to the surface of
the sample. For a round disk, this would simply
be the radial gauge. As a result we arrive at the
following expression for the zero mode .
contribution to the free energy of the canonical
ensemble :

F-0= i')A-, S S de,defle,) fie) Re

(4=
[(e,-e,) vir+ i—zﬁi(%” 1] * @

Eg. (9 allows us to evaluate the magnetic
moment and the susceptibility of the disk. As in
the AB case, for flux values such that 2¢p<¢,,
the r.h.s. of Eq. (9)
contribution and can be expanded lineary in flux.
By differentiating
susceptibility is given like

gives the dominant

twice with ¢, magnetic

4E /(2aT),
12E/ (n'7),

E2xT)r

EJ72rT a0

~12

Again, when max{22T,7})<A, the quantity of
order A should be substituted for Tand r in Eq.
(10). For a slab of thickness a{L, the 3D density
of states yields an extra factor of 2*/(ka® in the
of Eq. (10).
characteristic flux 4.,

r.h.s. Significance of the
below which the linear
response is valid, is confirmed via the evaluation
of the correlation function of the chemical po-

tential Eq. (2) for E)2rT)r

{0u(3¢p) o1 (0} >-<(&1(0) )™

=A'S' Ec/z:r'l‘[ m _ ._1.]
® asil(mt4)? om . an

=85 (2 L) 4T e+ D=2 (2)-C)

where 7= (1/2) 2zd¢p/d.)', I’ is the digamma
and C is the Euler's constant. , It
saturates to the log zat §¢p~¢.. As in the AB
case, the zero mode contribution rapidly decays

function,

above ¢. Therefore, one has to take into ac-
count the contribution to the susceptibility from
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the free energy of the grand canonical ensemble
in Eq. (9). The latter is known to yield the
diamagnetic Landau susceptibility which survives
in the disorder averaging (Fukuyama, 1971) and
stronger field ¢>¢,. The higher modes have to be
taken into accounts as well. For these modes,
the terms of the order E, appear in the Cooperon
and validity of linear response extends to the flux
quantum, Although the contribution of each
mode is easily estimated to be order of X, we
were unable to evaluate the total contribution of

higher modes.

Conclusion

In conclusion, we have shown that the
contribution of the zero mode of the Cooperon to
the direct average paramagnetic response of a
canonical ensemble, represented here by an
isolated disordered metallic disk penetrated by
the magnetic flux, is identical to that of the AB
response. For weak magnetic fields, the total

magnetic monent of the system is given by

2¢ | E/max{22T7), max{21T7r}2A

M~p5¢ ,
' LE/A, max (27T, 7} <A

12)

where ¢ is the flux through the metal, ¢y, for
the direct response or the flux through the hole
of the ring, #,5 for the AB response. Eq. (12)
can be translated into the following expression
for the magnetic susceptibility which is much
larger than the Landau susceptibility Xi:

E/max (22T 7), max{22T7)2A

E/A, max@aTr<a -

x~lxl

neglecting d%11/2 H* oc exp(-//L) in the AB

case (Cheung et al., 1989) and V'2'1/@ H'=XL

1971)
! is the mean free path of

in the direct response (Fukuyama,
respectively. Here,
electrons and H denotes the external magnetic
field. We find that the average response of the
This is

shown via the evaluation of an extra term

canonical ensemble is paramagnetic.
appearing in the free energy of the canonical
ensemble, as compared to the grand canonical
ensemble, and corresponding to the contribution
of the energy levels closest to the Fermi level. In
addition to the evaluation of such a term for the
direct response, we have also discovered that the
large magnetic susceptibility originates in the so
called zero mode, the zero eigenvalue solution
for the Cooperon, imposed by the condition of
the absence of the current through the sample
boundaries. In the AB case, the persistent cur-
rent reaches its maximal value of (eA/M) (E/
max {2xT,7}) at the chracteristic flux of #. and
then rapidly falls off. This pattern repeats itself
with periodicity of half the flux quantum. On the
other hand, a solid metallic disk in the magnetic
field exhibits a much more interesting behavior.
the zero mode
remaining
contributions to the susceptibility are ones due to

For the flux larger than ¢
contribution is suppressed. The
the higher modes of the Cooperon and the
omnipresent Landau diamagnetic susceptibility z
L obtained from the free energy of a grand
canonical ensemble. As the flux through the disk
is increased over half the flux quantum, the
contribution of the Cooperon will become
suppressed leaving behind only the usual Landau
diamagnetic susceptibility.
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Aharonov-Bohm uHg-3} 2|4 ul-$-o 4] 9] AA}A]
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