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Orbital magnetic response of mesoscopic metallic
systems with Kondo impurities
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Summary

We propose a novel mechanism effecting both the magnitude and the sign of orbital magnetic re-

sponse in a mesoscopic metallic system, namely, the electron-electron interaction induced via spin—flip

scattering from paramagnetic impurities. We evaluate its contribution to the response due to weak

localization effects and compare it with the average response of a canonical ensemble of noninteracting

electrons and with the localization correction due to the screened Coulomb interaction, We examine both

the singly connected (Landau) and multiply connected (Aharonov-Bohm) sample geometries and ex-

plain how various contribution to the total magnetic response can be distinguished by their dependences

on the magnetic field and the impurity concentration.

Introduction

Paramagnetic impurities can play a prominent
role in experiments studying magnetic response
of small metallic samples. One of aspects is the
interaction with the conduction
the feedback

from quantum interference effects on the orbital

exchange
electrons. In a disordered metal,
degrees of freedom of conduction electrons can

have dramatic consequences for the magnetic

response. In an earlier

the weak
localization correction to the Kondo susceptibility
has been evaluated by Okhawa e of (1983).
Later, Aronov and Zyuzin(1984) have studied

correction to the susceptibility of conduction

work,

electrons due to the interaction induced by spin-
flip scattering and found that scattering off the
same Kondo impurity induces an effective
interaction between the conduction electrons.
The interaction-induced localization correction

to the orbital magnetic response does not have a
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smallness in the-parameter (kg{)', where /is the
electron mean free path. This result was first
obtained for the screened Coulomb interaction
(Altshuler ef al, 1982) and can be understood as
Any localization correction has the
(kD). the diffusion
equation for the Cooperon is formally equivalent
to the Schrédinger equation with the “mass” (2D)"
' which is (kg#)" times lighter than the electron

follows.

smallness of However,

mass. Here D~ vl 7 is the diffusion constant and
T is the elastic scattering time. Since the mag-
netic susceptibility is proportional to the squared
Bohr magneton, this factor yields the largeness
of (kgl)®. The overall effect has the largeness of
kel,

cleaner samples.

meaning that it is more pronounced in

Whereas previous theories apply to macroscopic
systems, in this paper we extend the results of
Aronov and Zyuzin to the mesoscopic case where
the

Cooperon eigenstates. In the mesoscopic case, it

response is defined by the finite-size
is critical that a measurement of orbital response
does not typically involve sampie contact with
electron reservoirs. Consequently, the mech-
anism whereby the electron phase relaxation
would take place in a transport experiment-by
means of inelastic collisions in ideal metallic
not ordinarily
(Oh e dl,

In other words,

leads (electron reservoirs)-is
enacted in a magnetic experiment
1991; Altshuler e al, 1991).
provided that the electron scattering off the
sample boundaries is elastic, sample size is no
longer a legitimate scale for the breakdown of
this

we shall consider the exireme

phase coherence. To emphasize
circumstance,
quantum coherence limit, L<min {Lp L,}, where L
Li~/DIT is the thermal

length, and L, is the phase coherence length. To

is the sample size,

simplify the notation, we use a system of units ¥

=k=1

Evaluations of the Kondo effect

In a system with Kondo impurities, the phase-
breaking process will be defined predominantly
by spin-flip scattering processes, Ly~L,=./Dr,

, where 7, is the spin-flip scattering time,

T =2l L asistD), "

Y, is the density of states at the Fermi surface,
and §is the spin of Kondo impurities. Since the
interaction strength scales with the concentration
of paramagnetic impurities, so will the interaction
~induced localization correction. On the other
(1) that the spin-flip

scattering rate will increase with the number of

hand, it follows from Eq.

impurities as well leading to the increase of the
breaking

The maximum magnitude of the

number of the phase coherence
processes.
correction is achieved when these two effects are
balanced against each other. The difference with
the Coulomb interaction is understood by taking
into account the peculiar nature of the Kondo-
induced interaction (Aronov and Zyuzin, 1984)
shown in Fig. 1, whose strength A, is given by the

third order in the dimensionless exchange con-
P g
FAN

Fig. 1. Cooperon correction to Gibbs free energy
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with Kondo impurities.

Solid line denctes one—electron Green's
function, dashed lines are the elastic
scattering from impurities, and wavy
line, the Kondo interaction.



Orbital magnetic response of mesoscopic metallic systems with Kondo impurities

stant J (J>0 for antiferromagnetic coupling), Ag
oc J'n, being n, the conceniration of Kondo
In the Aharonov-Bohm case, the

analytical calculation of the orbital response due

impurities.

to the Kondo-induced interaction is based on the
following expression for the correction to the
Gibbs free energy which can be described by the
inverse Cooperon (Oh et al, 1991):

1/t o
OF=-8Kx,'3 33

wk>0!

a3
wit+ E (2n) " (nt 2¢/¢) " @

where w,=2xkT is the Matsubara frequency and
kis the integer, and Lis the circumference of the
ring. Taking summation on n (harmonics) first
and then on Matsubara frequency, we obtain,
upon differentiation on external magnetic field H,
the following expression for the Kondo-induced

magnetic moment of the ring :

M= 45 J@mI*T! )

sin (478/8)
cosh (v/2aL/Lr)cos (4xd/¢,) * 3

where pgp=e/2mcis the Bohr magneton. Eq.
(3) is valid for two-dimensional samples and for
three-dimensional slabs, whose thickness
satisfies the constraint a { L,, L;. The response
of a disk (of equal circumstance L) is equivalent
in the same fashion. However, the form of the
inverse Cooperon is slightly different with a

change :

w,+1 T =2E(24/84)". ()
leading to the following expression for the
Kondo-induced magnetic monent of the disk :

texp (-t/ty)
exp (22 Tt) -1

N
u=4Jr;‘[at“] TSn dt ®)

oH

From the correction of the Gibbs free energy

due to localization correction due to kondo
impurities (LCKI), we find the average correction
to the magnetic moment in the linear response

regime

(Tz) " (#/84),

LSLysl,
(#/90), - ®

M~ (kD | b

In terms of competition between the strength of
the Kondo-induced interaction and the spin-flip
scattering rate as a function of impurity
concentration, our result points to the former
tipping the balance in its favor. However, our
anaytical calculation does not extend beyond the
case of L< L, At any rate, the condition T~z!
signals a spin-glass transition and it is not very
to consider lower
Below the

conceivable that the interaction is induced by

meaningful significantly

temperatures. transition, It is

processes involving frozen spins. This will be
addressed in a future work. In the remainder of
this paper we shall assume that L< Lp< L oor 7!
< T<E=D/I'. Above ¢, the Kondo-induced
correction decays as M~#pl(kpl) (EE,) " (du/9).

Combining this with Eq. (6) and noticing that ¢#_

~ (T/Et)*gS., we obtain :

#/9..
$c/#.

#<d,

~ 2
M #Bj(kpl) (LLT/L,) ¢2¢c .

@
The orbital contribution of conduction electrons
must be distinguished in experiment from the
Curie response of paramagnetic impurities. To
compare the two effects, we notice that in terms
of the susceptibility per unit volume Eq. (6) can

be rewritten as
1~ I (ad (Tz) ™, ®

where 2, =-(1/3)¢gtv, is the Landau
susceptibility, In the 2D-case, {fa in Eq. (8) is
replaced by kg/. It is convenitent to use the same
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parameters as in Eq. (9) in the expression for

the Curie susceptibility,
Xcurie™ IxLl‘rl(n‘s) . 9)

Even if the susceptibilities in Eqs. (8) and (9)
are comparable in magnitude and the exchange
coupling is attractive, J)0, it is still possible to
distinguish the two effects if one takes into ac-
count that the Kondo-induced contribution is
(6) and

(7) and the periodic oscillations of the Aharonov-

highly non-linear, as is seen from Egs.

Bohm response. This circumstance is ever more
pertinent near a spin-glass transition where the
cusp. of spin susceptibility can be quite
pronounced. It should be stressed that the peri-
odic oscillations of the Aharonov-Bohm response
are eventually cut-off by the magnetic field
penetrating the annulus of the ring and freezing
spin degrees of freedom. This happens when pgH
~T. Thus,
associated with the Kondo-induced interaction is
possible when L< Lp(kgl) % in sufficiently clean
systems this is not in contradiction with the con-
dition I<Lp

the observation of oscillations

Discussion

We start the comparison between Kondo and
other effects by considering meaning of an
isolated sample, the typical situation of magnetic
measurements. The absence of phase and energy
relaxation at the sample boundaries establishes
(Serota et al, 1987: Altshuler et al, 1991: Oh e
al, 1991) the relevance of the magnitude field H,
such that H _LLy~g,= he/e, which corresponds to
the flux through the sample, H L', of order ¢.~¢
+(L/IL;)<¢,. For instance, the average orbital
magnetic response of a canonical ensemble of
noninteracting electrons grows lineary below and
peaks at ¢, Above ¢ it falls off as ¢'. The

localization correction due to the screened Cou-
lomb interaction, on the other hand, peaks at~g,
(Oh et al, 1991).
Aharonov-Bohm response of a narrow ring is
periodically repeated with the period #,/2. In
what follows, we show that LCKI peaks at ¢
(6) are as follows.

However, in either case the

The implications of Eq.
Suppose that we fix the concentration of
paramagnetic impurities and consider the effect
of temperature variations. As the temperature is
lowered, the maximum, M, ~pgJ(kpl) (LL/IZ ),
grows in magnitude just as it shifts toward
smaller fluxes until T~t;! . At this point, it
saturates at M ~pgJ(kel) (L/L)). 1t is interesting

that the latter is actually bigger, My,,~ppf(keh,
when L~L (meaning that ¢.~¢,). Therefore, the
magnitude of the maximum of the Kondo-induced
interaction correction does not favor quantum
coherence of the sample, It should be contrasted
with the average response of a system of non-
interacting electrons (Oh e al, 1991), in which
case the maximum is larger for a larger phase
coherence length. It should be noticed that the
dependence on the flux in Eq. (7) is same as for
the average response of non-interacting electrons
because of the similarity of the analytical
formalism. However, in the latter case, as well
as for the response fluctuations (Oh et al, 1991),
the underlying physics is based on the repulsive
(Altshuler and Shklovskii, 1986)

to avoid Crossings.

level statistics
which
Mathematically, it is

tends level
manifested by the

dependence of the orbital response on the aver-
which,

depends on the sample geometry. For instance,

age interlevel spacing A, in turn,
A is larger in a ring than in disk of equal
cidcumstance : its relation to the dimensionless
sample conductance gis clear from A~E/g The
role of A in the Kondo mechanism considered

here is reflected only by the condition T,7]! DA
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which signifies the breakdown of the diffusion

approximation.
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