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Summary

We study multiple solutions of Semilinear Elliptic Boundary Value Problems Au(x)+f(x, u(x))=0,
xEfl, Bu(x)=¢(x), xE80Q. As one application of the result, we show that the existence of several
ordered positive solutions of singularly perturbed semilinear elliptic boundary value problems as well
as to the formation of bounary layer, non-uniform interior layer.

1. Introduction

In this paper we study multiple solutions of
elliptic problems of the type :

{ Au(z) + f(z,u(z)) =0, z€Q ‘ )
Bu(z) = p(z), z €09, (1)

where (1 is a smooth bounded open domain in
R", n21, and 802 cC22(0{a(l), A is the
Laplacian operator and

du(z)

Bu(z) = p(z)u(z) + o)

where% denotes the outward normal derivative

of u on N .

Suppose now, that ¥, ¥ and W, W are pairs
of C’-subsolutions and C!-supersolutions of

* Ao +4ag

(1) such that vV(x) <w(x), W(x) <#(x), and ¥
() <9(x), for all x€0 and ¥(x,) >¥(x,) for
some x,EQl. Then there is a solution in the
ordered interval (v, ¥)J={ueC(fd) : v(x) <u(x)
<V (x), xE{l) and a solution in (¥, %). And
furthemore it is known that there exists a
third solution in the set (v, ®)/(V, 9)U(W.
®) under additional conditions (Amann).

The existence of a solution given a pair of
quasi-subsolution and quasi-supersolution, v
and ¥, with ¥(x) <V(x) for all x€0i, is well
known (Schmitt), Since these functions may
have singular points in the interior of o,
there arises the question, does there also exist
a third solution if there are pairs of quasi-
subsolutions and quasi-supersolutions as in the
preceding paragraph? The author is able to
prove this mudiiplicity resut for the (1) using the
maximum principles and the theorem on
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existence of several fixed points (pp.241.
Deimling). The resuit is a generalization of
the one of Amann in the case fis independent
of wu,

As one application of the result, the
existence of several ordered positive sohutions of
singularly perturbed semi-linear elliptic
boundary value problems :

eAu+ flz,u)=0, 2€Q
{ u(z) =0, z€dN

is studied under some restrictions of the
function f The result is a complete answer of
the open problem of de Figuerido.

Throughout this paper we assume that p,.q€
Cl.e(9Q) are nonnegative real-valued
functions which do not vanish simultaneously,
and conditions : 0<a1,

) fece(fixl), where I is fixed finite
closed interval in R',

(i) There is a positive constant M such that

f(z,u) = f(z,0)| < Mu —v|

forallzeflandu,vel

We define a classical solution of the (1) to
be a real-valued function u: 1—I such that u
CcC'(f1) and u satisfies (1) pointwise. And we

define the following notation :

c*@:N={ue c°M):u(z)el, z et)

2. Main Results

The following results are well known,

Theorern 1 [pp 137, Ladyzhenskaya]. For
every g CC=(T1) and ¢ €CL-*({1), the boundary value
problem (2) :

{ Au(z) — du(z) = g(z), z€Q @)
Bu(z) = ¢(2), z €99,

where 2 is a real parameter, has a unige solutionin
Cra(f§) for all A exept for a countable number of

vahies X,, Aq,'- that constitute the spectrum of (1).

In (2), if 2 is not in the spectrum of (1),
we can get a priori-estimate for (2).

Theorem 2 [Agmon, Amann]. There exits a
constant D such that for every ucCH({l),

llull} < Di(A — X)ul?

if Bu(x)=0 and 3Q . for all p>1. The constamt D
depends on 2 ond 0, but is independent of w

To convert (1) into an operator equation,
we choose 2)0 large enough so that 2)M and
2 is not in the spectrum of (1), Then by
Theorem 1, we can define an operator T as
follows; for any u€C*(fl : ), 0(rql,

Tu=v

if v is the unigue solution of the boundary

value problem :

{ (A = Mu(z) = —f(z,ulz)) — du(z), z€Q
Bu(z) = ¢(z), z €90

(For the Dirichlet problem case, we need the
additional condition : .@(x) € I for all x€3Q)

With the aid of Theorem 2, we note that T
is a continuous operator from C'({§ : ) into
w2(f) for p>1 (HereWi(fl) is the set of
all functions in Lp(ﬁ) possesing generalized
derivatives of the first 2 orders in {1 that are
p-integrable over {1). Since C*(Q1 : ) is dense
in C(A:D and T is continuous on C' (1 : 1),
we can extend T to C(fl : I) continuously. We
again denote the extension by T.
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On the other hand,
large, Wf, (fi) is continuously embedded in
Cla(fl). Therefore, we view T :C({l : [)=C
(i) as a continuous operator. By Theorem 2
and Ascoli-Azela Theorem, we can show that

for p21 sufficiently

T is compact, Consequently, if u is a fixed
point of the operator equation

Tu = u,

then u is a classical solution of (1).

Theorem 3 (Maximum Principles).
(A) Let u satisfy the differential inequality

(& = Nu(z) 20

in some neighborhood in (1, where 2>0. If u atiains
@ nonnegative maximum D at an interior point of the
neighborhood, then u(x) =D for ol x of the neighborhood

(B) Lt ueC'({l). Then for any 220, Mot

(A - \u(z) 20

Jor all xE(). lf u anains its maximum value D at a
boundary point % of (3, then any outward directional
derivative of u at % is positive uness u{x) =D for ol x €
fi.

Using Theorem 3, we can show that T is an
increasing operator in C(f1 : ), i.e., if u(® <
v(x) for all x€fl, then Tu(x) <Tv(x) for all x
€n.

Definitions : A function w : 1—~R is a quasi-
supersolution (or quasi-subsolution) of (1)} in
fi, if for any x,€3,
neighborhod N of x, and a finite number of
functions w, €C'(N), k=1,2,-,p such that

there exists a

w(z) = Jnin wy(z),  (or max wy(z))

for all x EN, where p may depend on X,. and

Aw,(z) + f(z,w,(z)) <V (or 20)

for all xeNAQ and k=1,2,--,p.
Furthermore, if x, €80,

pzoyun(zo) + a(z) 2 5 o(z) (or < piza))

for all %,

Remark : Throughout this paper any pair of
quasi-supersolution and quasi-subsolution is
contained in the bounded subset CT ({1 : I). for
some 7, 0r{1 of C(fl).

The following fact is the most important
ingredient of this paper

Theorem 4. Let W and % be a quasi-subsolution ond
¢ quasi-supersolution of (1), respectively. Then

W(z) <Tw(z) and (z)> Ttﬁ(z).

Jor ol (1. .

Proof : To show #(x}>Ta(x) for all xc{i,
suppose that there is a point x, €1 such that
R(x) (TW(x) . Let a=Tié()-#(%) be the positive
maximum of Tw-#w. Then there exists a
neightborhood U, such that x€U; and Tw(x)<w

(x)+a for all x€U;.
Casel el

By the definition, there exists a
neighborhood N; such that

zeN,CcU; and i(z)= lrsn.ig' w,(z)
for all x€N, Let #i)=w,(2) for some k
Then Ti(x)<w,(x)+a for all xEN; and TW(x)
-wt(§)+a, Since Tw(x}-w,(x) <TW(x)-W(x) for
all IEN;,

T(3) - we(2) = TH(3) - B(3)

2 Tix(z) — (=)
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2 Ti(z) — wilz)

for all xEN, Hence T#-w, has the positive
maximum value a at % in the neighborhood Nj
On the other hand, in Ny if DM

(& = AT - wi)(2)
=[—f(z,®(z)) — AB(z)] — Awi(z) + Awi(z)
> - f(z,B(z)) - Aid(z) + fz, we(z)) + Awn(z)

20.

By Theorem 3, (A), TW(x) -w(x)=a for all x
in Ny Hence, for all xENy,

a = Ti(z) - wi(z) < Td(z) - B(z) < Td(2)

—wi(£) = a.

Therefore, Tw(x)=w(x)+a for all xEN;, By
the continuation of the method on the bound—
ary ONjof Ny we can conclude that Ti(x)=#
(x)+a for all x€{I. And so, for any x€0,

Ad(z) = ATH(z)
= —f(z,%(z)) — Aio(z) + AT@(x)

2 ‘f(zia(z)) + Aa
Since Aw(x)<-f(x, w(x}) localy in 0}, so

_f(:r G(I)) = _I(Ia {0\(1)) +Aa

locally in 1. This implies that a=0., This
leads to a contradiction. So we can conclude
that there is no interior point of 1 such that
T#-w has a positive maximum value at that

point,
Case 2: £ € 90

Then there exists a neighborhood N; such

that N,N0+0, xEN;, and #(x)=minw,(x)

for all xEN,N0. Let #(3)=w, (%) for some k

Then Ti(x)<w (x)+a for all xEN N,
Since Tﬁ(x)-wk(£)+a,

dT'%(%) > dw, (%)
dv ~— dv

If p(2)0, then

¢(2) 2 p(2)[wu(2) + a] + q(3 )dw.(z)

2 ¢(2) + p(£)a-

This leads to a contradiction for p(2}a)0.

Let p(2) = 0. Then ¢(z) > 0.
It ﬂ'i:,(i) du:;(z) then @(2) > q(z)dw.(:)

(z). This also leads to a contradiction.

dTw(z)
dv

dw.(:)

Let .Forallze N, NQ2

(A - A)TW - w, — a)(z)
2 - f(I,ﬁ(I)) + f(I, wk(z)) + ’\[w‘

— &(z)] + Aa

>0.

Since Tﬁ"-(wk+a} has the zero maximum value
of the boundary point 2in N;NQ}, by Theorem
3, (B) Té¥(x)=w,(x)+a for all xEN,NQ. This
implies that Tw-# has the positive maximum
value a at an interior point of 3, By Case 1,
this also leads to a contradiction. Therefore,
Ti<@ (x) for all xefl.

Similarly, we can shw that Tw(x)<w(x} for
all xefi.

Remark : Theorem 4 is valid if we replace

A by a uniformly elliptic operator

L= Y A=DY + ZA.(I)D' + Adlz)

i=1 j=1
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where the coefficients of L and B are smooth,
because Theorem 4 works for this perator
with a large value of 2 not in the spectrum
of (1).

The following theorem is known

Theorem 5 [Amann, Deimling]. Let X be a
Banach space : SCX a retract and T: S8 compact; S,,
S, digbéumm«»fS:EjCSj open in S for j=1,2,,
Suppose that T(SJ.)CSJ. and Fix(T) ﬂ(.S;jEI.J=¢ Jor j=
1,2. Then T has fived points u;€E; and a thind fixed
point K €S/(S,U8), where Fix(T)= {xES : Tu=
u}.

The following theorem is the main result of
this paper,

Theorem 6. Suppose that W, % are quasi-subsolutioni
and .8, are quasi-supersohtions of (1) such that

T(z) S Gafz) and By(z) < By(z)

for ol xE{} and j=1,2, and B (%)% (%) for some
%EN. If & ond ®§ are not sohions of (1), then
(1) has ar least dhree distinct sobutions u, (j=0,1,2).
such that

w;(z) < y(z) < Wi(x)
for ol x€Q and j=1,2, and especially

y € [W), B,] \ [T, 6,) U [G, B,).

Proof : Without loss of generality, let ¢ (x) =
0 for all x€80.

Case 1 The Dirichlet boundary condition, i.
e., Bu=u Let e be the unique solution of the
boundary value problem

{ (A-XNe(z)=~1, z€Q
e(z) =0, z € ON.

Consider the Banach space Cc(ﬁ). (Aman],
which is the set of all functions ¥ in C(f1) so

that -ce(x) <u(x) <ce(x) for some constant ¢>0
and for all x€{1, with the norm

lulle = inf{e > 0 : —ce(z) < u(z) < ce(z),z € 0,

we note that C(l) is continuously embedded
in ¢(f1) and the operator T maps C,({1:1I)
into C(f1) compactly.

Let
S=cn@,o], S =C.0)n{w;, 5,
(7=1,2,).

Clearly, SjCS and nonempty, From Theorem
4, T(S)CS and T(S,.)Cijor J=1,2.

We note that § 8, and § are retracts and §N
S,=¢.

Let

E =85 n{ueC.(0):u(z)<b(z),z € 1}
and
E=5n{ueCD):uz)> Bifz),z €0).

We note that E and E are open in § with
respect to the norm ],

To show that Fix(T)ﬂ(Sj/Ej) =¢, j=1.2,
suppose that there is u€Fix (T) (S)JL? for some
J Then

UESj\Ej and Tu=u.

Let j=1. We note that wis a solution of (1).
Since w€S8,\E,, #,(Dd <u(x)<w,(x) for all x&
I and there is x €0 such that u(x)=#(x).

On some neighborhood of X%. if we choose
A0 sufficiently large, but independent on 2,
then

(A = B)(u(x) - By(z))
2 ~ f(z,u(z)) + f(z, B:(z)) + 3[Gi(2) — u(z)]
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20.

Since (u-#) (x)<0 for all x in the
neighborhood, by Maximum Principles, u(x) =,

(x) on the neighborhood of x. By the
continuation of this method on the boundary
of the neighborhood, we can conclude that #
(x) =u(x) for all x€{l, This implies that & is
This leads to a
contradiction because #& is not a solution of
(1). Hence Fix(T)N(S,\E)=¢.

Similarly, we can show that Fix(T)N(§\E)
=¢. Therefore T satisfies all conditions of
Theorem 5, So T has at least three fixed
points %, %, % such that u).E[wj,wj]. i=1.2,
and wE€(H,A)/(M, R UK, &),

Case 2 Neumann or Robin boundary
conditions with ¢(x)>0 for all xE84,

In this case, we claim that for any x&C({}:
D, @) if ®(x)<u(x) and Tu(x)=u(x) for all x
€fl, then ®(x){ux) for all x€f}, and (i) if
u(x)<# (x) and Tu(x)=wu(x) for all xE{1, then
u(x)}{w (x) for all x€f,

To prove the first claim, we suppose that
there is ¥€C ({1 : 1) such that %(x)<u(x) and
Tu(x)=u(x) for all x€fl and % (%) for some x

a solution of (1).

c€fl. f xen, then on some neighborhood of
%,

(A - B)(®@, — u)(z)
> - f(2,Ba(2)) + f(z,u(2)) + Blu(z) — By(z)).

So if we choose 8)0 sufficiently large, but in-
dependent on 2, then(A-8) (#,-u}(x)20 on the
neighborhood of X». Since (#%-u)(x)<0 on the
neighborhood, by Theorem 3, (A), #%(x%=w(x)
for all x of the neighborhood of x. By the
continuation of this method on the boundary
of the neighborhood, we can conclude that i
(D=uf(x) for all x€{i, This leads to a
contradiction, because # is not a solution of

(1) .Therefore % €8Q. Let d®%(x)/dpdu(x)/dr.
Then o (%) {p(x) u(a)+q(&)g‘,—$5)— <p(xy) :

Let dw,(x)/d~=du(x)/dr. Since
on some neighborhood of %, (A-8) (R-u)(x)2
0. by Theorem 3, (B),
neighborhood of X». Hence we can choose an
interior point ¥ of Q1 such that #,(%)=u(¥). As
before, we can conclude that w,(x)=u(x) for
all xc{l. This leads to a contradiction.
Therefore, #,(x){u(x) for x€0.

contradiction .

% (x)=u(x) on the

The proof of the second claim is quit
similar, Hence,

Fix(T) N ([@,, @) \ [@:,©,)) = 8
and
Fix(T) N ([@,, D) \ (@5, 10a]) = 0.

By Theorem 4, T has at least three fixed
points %, u, % such that uje[wfﬁi]. Fl1.2
and % €(®, #)/(®, &I U(H, Q).

3. Applications

Consider a class of singularly perturbed
problems of this type :
{é%qn+fumun=m zeQ @)
’«1‘) = 0, z € 39,

where 1 is a smooth bounded open domain in
R", n>1, and the real-valued function f: {1 XI
—R' is reguired to be C'. More assumptions
on f:

(f1) There exist N(N>2) functions g: 1 —I(i
=1,2,-+,N), which belong to C*{(fl) and 0¢{g
(x) (& (x){-~{gy(x) and f(x g(x))=0 for all xEf}
and all i=1,2,--,N

(f2) There exists a positive constant K such
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that f (x g(x))<-K* for all x€{l and all i=],
2‘...N

(f3) For '=1

01s)
f(s,u)du >0
§ ()]
for all s€80 and 7(s5)€(0.8,(s}). For i 2,
there exists an r-dimensional open subdomain

« 20s)
0, of N such that 30 €C** and| f(s,u)

¥(e)

du >0 for all S€80,; and r(s)E00.g(s)).

The main goal of this applications is to
investigate how changes of sign of the func-
tion f give rise to the existence of several
ordered positive sobtions of (3) as well as to the
formation of boundary layer for small values
of the parameter £)0,

(3) has been discussed previously by Brown
and Budin and Hess, Their proofs do not yield
a complete ordering of solutions, More
recently, de Figueiredo proved the existence
of several ordered positive solutions under
hypothes (f1), (f2), a much stronger con-
dition than (f3), a certain symmetric property
of 01, and also he assumed f is independent
of x, In that paper (De Figueiredo), he said
that a complete ordering of positive solutions
for general domain 1 in R®, 222 is open.

Constructing MNpairs of quasi-subsolutions
and quasi-supersolutions of (3) and using the
main result of this paper, the complete
ordering of positive solutions of (3) is
obtained, In order to construct a quasi-
subsolution and a quasi-supersolution of (3),
we use a coordinate transformation near the
boundary 8Q . If x€(1, we denote by t(x) the
distance from xto 80 and by s(x) the point

of 80 which is closest to x Of course s(x)
might not be uniquely defined, but will be if x

is close enough to 3Q . For sufficiently small

neighborhood of 80, we have

€A, = Zz + O(e), t=er

ar?
This procedure is given in (Berger Franenkel),
Now consider the following boundary value

problem :

Pu .
{ 5 = Fls,u(s,m)

u(s,0) = {(s),

u(s,00) =0,

where s€ 80 is a parameter and rE(), o)
and F(s, - ) is a real-valued function defined
on (0, =},

The following fact is well known

Lemme. [Devillier, Fife]. Let £(s) and F(s )
be infinitely differential for sC€ 9. and uE(~o0,+ ),
all derivatives being uniformly comtinuows. For off s€ Q).
assume that

F(s,0)=0, F,(s,0)>0, fF(s,u)du>0

fral €(0,€ (s5})] or wE(£(s),0). Then there s @
Mcnmmdaian[(;r)af'ﬁeabonw
volue problem and it & infinitely differentioble in s and w
Moreover each of the derivatives of v decays exponenticlly as
T—00, uniformly in 5, in the sense that ff D is any C°
~finear differential operator in a and T, then there exist
positive constants C and 8, posuibly depending on D, such
that [Dv (s, 7)|<c ep (Br).

€'A.v(s,7) = % +0(e)

as &0, uniformly on s€8Q, if (s t) is the
uniqué monotone solution of the above
boundary value problem,

Using Lemma, we have the following the-
orem which yields the existence of a pair of

subsolution and supersolution of (3). (Kelley,
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Ko). -

Theorem 7. Let 2 €C%-2 and fEC' (I X]).
Suppase that hhere is a fundion g C* (1) which satisfies
the foBlowing conditions;

(i) g(z) > 0 for all z € 0.
(ii) f(z,9(z))=0forallz e

(iil) fu(z,9(z)) < -K*<Oforallze(l

(iv) L'((:)) f(s,u)du > 0 for all s € 9Q and

(s) € [0,9(s))-

Then there is a small positive number €, such that for
any €, 0{e<¢&,, there are a C-subsolution and a C-
supersolution of (3) .

Proof : We note that there is a positive
constant 7, such that j;(x, g(x)xr) <-E for all
0<r<r, and for all x€{i. Let p)0 be a
sufficiently small number, and let ¢(p,s)=f(5g
(s)-p) for all s€9Q. Then £(p,sH0 for all s
€80 . Then there is a positive number 7(p)
such that ¢(p,9 27(p) for all s5€90.

To show the existence of a subsolution and
a supersolution of (3), let F(s u)=f(s g(s)-p-u)
~(p,s). The F(s0)=0 and F(50) 2K0 for all
s€ 8. Since £(p,s) —0 as p—0 for all s€a
2, we can say that, for all p)0 sufficiently
small,

- s(s)-¢

/ F(s,u) du = / F(5,u) du — U(p, s)w
o #(s)-p-w

is positive for all we(0, g(s)-p) and for all s

€80, Then, by Lemma, there is a unique

monotone solution »(s r: & of the problem

{ g%’ = f(s,9(s) — p —v) - &lp, )
v(s,0;¢) =g(s)—p
such that the first derivatives and the second
derivatives and the second derivatives of vin s
and 7 decays exponentially as t-—oo,

Let 6'= {(s1) : 0<t<p,s€00}and p<t,,

where t, is independent of € and is so chosen
that the normals through distinct points of 8Q
do not intersect on 0, We take a smooth
function ¢ (1) EC®((0,9°)) such that ¢ (1)=1

for OS'S‘QL and o (1) =0 for 12 p, and 0<a (1)

<1 for all ¢, and we define »(s 7:€) =v(s 7:€)
o (1) for xeﬁp, where t=¢7.

Let w(s t:€)=g(s5 v)-p-¥(s, 7:€) for erp.
Then for t 0=<t<p

EA,W(s,T; €)= —%ﬁ(s,r; €)+ O(e)
= ~[f(s,9(s) —p—v(s,7; €))
—L(p, s)lo(t) + O(e).
Since we can assume that f(s g(s}-p-v (s, v:€))

-2(p, 970 for all —ZESISp and for all s€89,
A WB(s,7; €) > —f(s,9(s) —p—v(s,7; €)) +
&p, ) + Ofe)

for all 0<t<p, because ¢ (1) =1 for 0515-5

. Now
f(a,r,ﬁ(s,'r; E)) - f(siovg(") —p= v(s"r; E))

=V (2 (6), Blo, 7€) SN+ fuloyw)

{1 —a(t)o(s, 7€),

wher x*(s) is on the line segment passing
through the point x(s5 z) and son Op. and 0 <t
(t* and #(s t:8){ut{g(s)-p-v(s, v:¢). Sinve »
{s, v:€) decays exponentially for -2p—$tSp as
&0,
£(3,m, (5,75 €)) ~ f(3,0,9(s) = p = v(s,75 )
= O(t).

So we have
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A, W(s,7;€) 2 —f(s,7,WB(s,7; €)) + &p,3) + O(t)

Since £(p.5)) 7(p))0 for all s€8Q, there is a
positive number § such that for all 1 0<¢<g, .

A, W(s,7; €) + f(s,7,B(s,7;€)) 2 0.

For ¢ 4{t<p. we note that W(s r:£) converges
to g(s t)-p as €—0, uniformly on s€9Q. So
for sufficiently small &0,

A, W(s,7;€) + f(s,7,B(s,7;€))20. (%)
Forz € Q\0,, B(z; ) =g(z) —p. Then

EAB(z; €) + f(2,W(z; €) = O(e") + f(z,9(z)

=P (+)

for all €)0 sufficiently small, Combining (%)
and (% *x),

EAW(z; €) + f(z,®(z;€)) 20

for all x€fl and for all €)0 sufficiently small,
Since ®(50:€) =0, #(x;c) is a subsolution of
3.

To construct a supersolution, we choose a
constant 8,50 such that f(x g(x)+8) <-K for
all g with 0<8<8,. Let ¥(x;e)=g(x)+5,. Then

EAw(z; €) + f(x,0(z: €))
=0(*) + f(z,9(z) + ) <0

for all &0 sufficiently small and for all x€{l,
Since #(x:€) 2g(x), x€M, #
supersolution of (3).

Remark : Let 3R ecC2e, feC*(fix 1), 0a{l.
If we replace the hypothesis (i) in Theorem 7

is a

by the assumption that there is a positive
number 7, such that

f(z,9(z)—7) >0 and f(z,9(z)+7) <0

for all xEf} and for all r with 0<r <7,, then
the claim is also true,

The following theorem is the complete an-
swer to the question of the existence of 2N-1
ordered positive solutions of (3) for a smooth
bounded open domain ) of R*, a>1,

Theorem 8. Le 9t €C22, feC' (i X1} and f
satify (f1), (f2) and (f3). Then there exists £,50 such
that for ol ol € with O(e<e,, the (3) 2N-I ordered
positive solitions u(x:e), H+(x;e), L (XiE), (i=
1,-, N-1) such that

(i) w(xie)<u, . (xie).<u  (xi€) for of x€fl,
@) for any integer j (=1,-.N), w(xie) converges

m;.(x) as €—0, uniformly on every compact subset of (3
i ( Here n|=ﬂ),

Proof : Let 0,, i=1.2,,N be the
subdomain in hypothese (f3) and let 0,=0Q.
For any i by Theorem 7, there exists €0
such that for any & with (0{¢<g, there is a
pair of functions W(x:¢) and @(x:e) such that

Wi(z; £) S Wi(z; €)
for all z € §); and

{ AT (z; €) + f(z,Bi(z;€) 20, z€N,
Wi(z; €) =0, z € N

and
{ E2AD(z; €) + f(z,B:(x;€) <0, z€Q;
0i(z; €) 2 gi(2), z € 8

Let e = min{e; |1 <i <N}, and foranye,0<e¢

< &, let
U(z; ) =Wy(z;¢), z€l]
o max{iy(z; €),W(z; €)}, z€ 1,
iz €)= { @(z; €), otherwise
_ o f max{ia(z;€),Ba(z;¢)}, zell
Uaxi€) = { @y(z; €), otherwise
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ia(z;€) = { max{in-i(z; €), Ba(z; 6)}, =€

Gy (z; €), otherwise

Then, #fxie) <w(x:e} for all x€{l, and it is a
pair of quasi-subsolution and supersolution of
(3). By the construction Z(x:e) <, (xi€) for
all x€fl and all ~1,2,-,N-], as long as &
is sufficiently small. Clearly, #(xi¢) and I_,
(x:€) are not solutions of (3).

By theorem 6, there exist at least 2N-1
solutions x(x:e), , +(x;e), u‘.H(x.'e) of (3) for
all i=1,2,--N1 such that

u(z; €) Suyyz; &) Sunlz; )

#(z;e) Swlz;e) < Bi(z; €).

for all x€Q) and w,  €(7, % JN#, WU(&,,

9'.+ 7. We note that u,is the minimal solution
and ., is the maximal solution of (3} in the
order interval (% #, ). By the construction of
W, i and #,u(xie) converges to g,(x) as e—0,
uniformly on every compact subset of 01 , for
i=1,2,--, N

Remark : As before the remark of Theorem
7, if we replace the hypothesis (f2) in The-
orem 8 by the assumption that there is a
positive number 7, such that

f(z,9i(z) =7} >0 and f(z,0:(z)+4) <0

for all xeﬁl. and for all r with 0{r<r,, then
the claim of Theorem 8 is also true,
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