On the Symmetric Riemannian Manifold**

Hyun Jin-Oh*

對稱 Riemann 多樣體에 관하여**

玄進五*

I. INTRODUCTION

Let M be a C^{∞}manifold, and let $\theta : \mathbb{R} \times M \to M$ be a C^{∞}mapping satisfying the condition

- 1) $\theta(0,p) = p$ for every $p \in M$
- 2) $\theta_t \cdot \theta_s(p) = \theta_{t+s}(p) = \theta_s \cdot \theta_t(p)$ for every s,t $\in \mathbb{R}$ and $p \in M$ where $\theta_t(p) = \theta(t,p)$

Then θ is called a C^{∞} action or a one parameter group of M. For each one parameter group $\theta: \mathbb{R} \times \mathbb{M} \to \mathbb{M}$ there exists a unique \mathbb{C}^{∞} vector field X, which is called the *infinitesimal generator* of θ , such that

$$X_{p}f = \lim_{\Delta t \to 0} \frac{1}{\Delta t} (f(\theta_{\Delta(t)}(p)) - f(p))$$

for each $f \in C^{\infty}(p)$

In this case, for all $t \in R$ and $\theta_t : M \to M$ we have

 $\theta_{t_{\#}}(\mathbf{x}_{p}) = \mathbf{X}_{\theta_{t}}(\mathbf{p})$

where $\theta_{t_{\pi}}$: T(M) \rightarrow T(M) is a map which commutes the following diagram:

* 師範大學 副教授 **本 論文은 文教部, 學術研究 助成費에 의한 研究임,

Note that π : T(M) \rightarrow M is the tangent vector bundle of M. Hence we have the following results

1) The infinitesimal generator X of θ is invariant under the action θ

2) Each orbit of the action θ is an integral curve of X : that is

$$\frac{\mathrm{d}}{\mathrm{dt}}\boldsymbol{\theta}_{\mathrm{t}}(\mathrm{p}) = \mathbf{X}_{\boldsymbol{\theta}_{\mathrm{t}}}(\mathrm{p})$$

II.BI-INVARIANT RIEMANNIAN MATRIX

Let G be a Lie group. For each $a \in G$, let L_a [R_a] be a left[right] transformation, that is

 $L_{a}:G\rightarrow G,\ L_{a}(g)=ag \qquad \text{for every }g\in G$ and

$$R_a: G \rightarrow G, R_a(g) = ga$$
 for every $g \in G$

If a C^{∞} vector field X of G has the property that $L_{a_{\mathbf{x}}}(Xg) = X_{ag}$ for every $a, g \in G$, then X is said to be *left invariant*. We put

 $\mathcal{L} = \{X \in \mathbf{I}(M) | X \text{ is a left invariant } C^{\infty} \text{ vector field} \}$

where $\mathbf{X}(\mathbf{M})$ is the set of all C^{∞} vector field defined on the C^{∞} manifold M.

Then \mathcal{L} is a Lie algebra. In this case $\mathcal{L} \cong T_{e}(G)$ where e is the identity of G as Lie algebra (S.Helgason, 1962, W.Klingenberg, 1982). The Lie algebra \mathcal{L} is called the *Lie algebra* of G

Let $F: R \rightarrow G$ be a group homomorphism, where R is a Lie group with addition and G is a Lie group. Then $F(R) = H \subset G$ is called a one parameter subgroup of G.

PROPERTY 2.1 Let G be a Lie group. Then there is an one-to-one correspondence between Lie algebra \mathcal{L}^{2} and the set of all one-parameter group of G, equally, every left invariant vector field of G is complete (H. Karcher. 1968)

Let $F: \mathbb{R} \to G$ be a one parameter subgroup of a Lie group G and X the left invariant vector field on G defined by

$$X_{e} = \frac{dF}{dt} \Big|_{t=0} \qquad (=\dot{F}(0))$$

Then we have a unique one parameter group

$$\theta : \mathbf{R} \times \mathbf{G} \to \mathbf{G} \quad (\theta(\mathbf{t}, \mathbf{g}) = \mathbf{g} \mathbf{F}(\mathbf{t}) = \mathbf{R}_{\mathbf{F}(\mathbf{t})}(\mathbf{g}))$$

of G (see property 2.1).

conversely, let X be a left-invariant vector field of G and θ : $\mathbb{R} \times G \rightarrow G$ the corresponding one parameter group of G to X. Then $F: \mathbb{R} \rightarrow G$, defined by $F(t) = \theta(t, e)$ is an one parameter subgroup of G such that $\theta(t,g) = gF(t)$, where e is the itentity of G. Therefore, there exists the one-to-one correspondence between $T_{e}(G)$ and the set of all one parameter subgroups of G. In consequence, we have the following one-to-one correspondence ([4]):

 $\mathscr{L} \leftrightarrow$ the set of all parameter group of $G \leftrightarrow T_{\bullet}(G)$.

Therefore, we can define

$$F: \mathbb{R} \times T_{e}(G) \rightarrow G$$

such that F is a function of class C^{∞} with respect to $t \in \mathbb{R}$ $z \in T_{+}(G)$ and $\mathring{F}(0,z) = Z$

PROPOSITION 2.2 For $s, t \in R$ and $z \in Te(G)$, F(st, z) = F(t, sz)

proof. Put st=T. Then $\frac{dF}{dT} = Z$ and also

$$\frac{\mathrm{d}F}{\mathrm{d}t}\Big|_{t=0} = \frac{\mathrm{d}T}{\mathrm{d}t} \frac{\mathrm{d}F}{\mathrm{d}T}\Big|_{T=0} = \mathbf{s}\mathbf{\dot{F}}(0,z) = \mathbf{s}z$$

Hence the map $t \rightarrow F(st, z)$ is a group homomorphism and we have

$$F(st,z) = F(t,sz) ///$$

Let $\boldsymbol{\Phi}$: T(M) \times T(M) \rightarrow R be an inner product on a manifold M, that is for each $p \in M$ the map

- 1) $\boldsymbol{\Phi}_{p}(\mathbf{X}_{p}, \mathbf{Y}_{p}) = \boldsymbol{\Phi}_{p}(\mathbf{Y}_{p}, \mathbf{X}_{p})$ (symmetric)
- 2) $\boldsymbol{\Phi}_{p}(X_{p}, X_{p}) \ge 0$ and $\boldsymbol{\Phi}_{p}(X_{p}, X_{p}) = 0 \mapsto X_{p} = 0$ (positive definite)

Let (U, φ) be a local coordinate system of M. then $E_{ip} = \varphi_{*}^{-1}(\frac{\partial}{\partial x_{i}})$ $i=1,2,\cdots,n$ is called the *coordinate frame*, where $p \in U$, $\varphi(p) = (x^{1}, x^{2}, \cdots, x^{n}) \in \mathbb{R}^{n}$.

It is clear that $(E_{1p}, E_{2p}, \cdots, E_{np})$ forms a basis

-162-

of T_p(M). We put

$$\boldsymbol{\Phi}_{p}(\mathbf{E}_{ip}, \mathbf{E}_{jp}) = \mathbf{g}_{ij}(\mathbf{p})$$

Then, in $T_p(M)$ we have

$$\Phi_{p}(X_{p}, Y_{p}) = \sum_{i,j=1}^{n} g_{ij}(p) a^{i} b^{j}$$

for $X_{p} = \sum_{i=1}^{n} a^{i} E_{ip}, Y_{p} = \sum_{i=1}^{n} b^{j} E_{ip}$. We put

$$\mathbf{g}\left(\mathbf{p}\right) = \begin{pmatrix} \mathbf{g}_{11}\left(\mathbf{p}\right) \cdots \mathbf{g}_{1n}\left(\mathbf{p}\right) \\ \vdots \\ \mathbf{g}_{n1}\left(\mathbf{p}\right) \cdots \mathbf{g}_{nn}\left(\mathbf{p}\right) \end{pmatrix}$$

which is called a Riemannian matrix of M.

A manifold M with Riemannian metric is called *a Riemannian manifold*. It is well-known that every manifold M has a Riemannian metric and a manifold M is orientable (A, Besse 1978, E, Marsden 1973)

PROPERTY 2.3. Every Lie group is orientable (W. M. Boothby, 1975).

Let G be a Lie group, For each $a \in G$, we define $I_a: G \to G$ by $I_a(g) = aga^{-1}$. We can easily prove the following : For $a, b \in G$.

$$\begin{split} L_{\mathbf{a}}^{1} = L_{\mathbf{a}^{-1}}, \quad R_{\mathbf{a}}^{-1} = R_{\mathbf{a}^{-1}}, \quad L_{\mathbf{a}} \cdot R_{\mathbf{a}} \cdot L_{\mathbf{a}} \\ I_{\mathbf{a}} = L_{\mathbf{a}} \cdot R_{\mathbf{a}^{-1}}, \quad I_{\mathbf{a}\mathbf{b}} = I_{\mathbf{a}} \cdot I_{\mathbf{b}} \end{split}$$

Therefore we can get the following : For $X, Y \in \mathscr{G}$

(1)
$$L_{b*}(R_{a*}X) = R_{a*}(L_{b*}X) = R_{a*}X \in \mathscr{L}$$

(2) $I_{a*}(X) = L_{a*}(R_{a*}X) = R_{a*}X \in \mathscr{L}$
(3) $I_{a*}([X,Y]) = [I_{a*}X, I_{a*}Y] \in \mathscr{L}$
(4) R_{a*} and I_{a*} are automorphism of \mathscr{L}

We put $I_{a} = Ad(a)$. Then

Ad : G
$$\rightarrow$$
 Aut (\mathcal{L})

defined by $Ad(g) = I_{g*}$ is a function of C^{∞} , where $Aut(\mathcal{L})$ is the set of all automorphisms of \mathcal{L} .

$$L_{a}^{*} \phi_{ag} = \phi_{g} \quad (R_{a}^{*} \phi_{ga} = \phi_{g})$$

then ϕ is said to be *left invariant* (*right invariant*), where

$$L^{*}_{\mathbf{x}}: \bigwedge^{\mathfrak{m}} (T(\mathbf{G})) \rightarrow \bigwedge^{\mathfrak{m}} (T(\mathbf{G}))$$

is defined from $L_a: G \rightarrow G$.

It is bi-invariant if it is both left-and right-invariant. If a Lie group G is compact and connected, then there exists a unique bi-invariant volume element Ω such that the volume of G is 1 (W.M.Boothby, 1975)

PROPOSITION 2.4. It is possible to defined a bi-invariant Riemannian matrix $\tilde{\phi}$ on a compact connected Lie group G.

Proof. We have note that $\tilde{\boldsymbol{\phi}}_{e}$ determines a bi-invariant tensor field of order 2 on G if and only if Ad(g) $\tilde{\boldsymbol{\phi}}_{e} = \tilde{\boldsymbol{\phi}}_{e}$ for all $g \in G$ (W.M. boothby. 1975). By $(\boldsymbol{*})_{z}$, there exists a unique bi-invariant volume element $\boldsymbol{\Omega}$ of G with the Riemannian matrix $\boldsymbol{\phi}$,

Given X_e , $Y_e \in T_e(G)$, define a function $f: G \to R$ by

 $f(g) = (Ad(g)^{*} \boldsymbol{\varPhi}_{e}) (X_{e}, Y_{e}) = \boldsymbol{\varPhi}_{e} (Ad(g) X_{e}, Ad(g) Y_{e})$

for each $g \in G$ and $\tilde{\phi}_e(X_e, Y_e) = \int_G f(g) \Omega$. Thus, for $a \in G$, we have

-163-

$$Ad (a)^* \quad \widetilde{\boldsymbol{\phi}}_e (X_e, Y_e)$$

$$= \widetilde{\boldsymbol{\phi}}_e (Ad (a) X_e, Ad (a) Y_e)$$

$$= \int_G (Ad (g)^* \boldsymbol{\phi}_e) (Ad (a) X_e, Ad (a) Y_e) \Omega$$

$$= \int_G (Ad (a)^* Ad (g)^* \boldsymbol{\phi}_e (X_e, Y_e) \Omega$$

$$= \int_G Ad (ga)^* \boldsymbol{\phi}_e (x_e, Y_e) \Omega$$

$$= \int_G f(R_a (g)) \Omega$$

Since $I_a: g \to G$ is a diffeomorphism by $(*)_i$, we have

$$\int_{\mathrm{Ia}(G)} f(g) \Omega = \int_G f(\mathrm{R}_{\mathrm{a}}(g)) \mathrm{R}_{\mathrm{a}}^* \Omega.$$

Note that $I_a^* \Omega = R_a^* \Omega$, $I_a(G) = G$. Moreover, Since $R_a^* \Omega = \Omega$, we have

$$\widetilde{\boldsymbol{\Phi}}_{\mathbf{e}}(\mathbf{X}_{\mathbf{e}},\mathbf{Y}_{\mathbf{e}}) = \int_{\mathbf{G}} f(\mathbf{g}) \, \boldsymbol{\Omega} = \int_{\mathbf{G}} f(\mathbf{R}_{\mathbf{a}}(\mathbf{g})) \, \boldsymbol{\Omega} \, .$$

Thus we have

Ad (a)
$$\widetilde{\boldsymbol{\phi}}_{e}$$
 (X_e, Y_e) = $\widetilde{\boldsymbol{\phi}}_{e}$ (X_e, Y_e)

Since $\tilde{\phi}_{e}$ is symmetric, positive definit and bilinear, so is $\tilde{\phi}$. Hence $\tilde{\phi}$ is a bi-invariant matrix on G. ///

II SYMMETRIC RIEMANNIAN MANIFOLD

Let M be a connected Riemannian manifold. If to each $p \in M$ there exists an isometry $\sigma_p : M \rightarrow M$ which is

1) $\sigma_{\rm p}$ is involute (i.e $\sigma_{\rm p}^2 = \sigma_{\rm p}$), and

2) there exists an open neighborhood U of P such that $\sigma_p | U$ has the only fixed point P, then M is said to be Symimetric.

Sometimes P is called the *isolated point* of a symmety at P

Let M be a symmetric manifold and let $\sigma_p : M$ $\rightarrow M$ be a symmetry at P. Then for $X_p \in T_p(M)$, we define $\sigma_{p*}: T_p(M) \rightarrow T_p(M)$

by $\sigma_{p*}(X_p) = -X_p$ (W. Klingenberg. 1982) and a symmetric Riemannian manifold M is complete (W. M. Boothby, 1975)

PROPOSITION 3.1. Every compact and connected Lie group G is the symmetric space with respect to the bi-invariant metric. Thus with the bi-invariant metric G is complete.

Proof. By proposition 2.4, G has the bi-invariant metric. Define $z \downarrow s: G \rightarrow G$ by $z \downarrow s(x) = x^{-1}$ for each $x \in G$. If follows that $z \downarrow s$ is involute because that $z \downarrow s$ has only one fixed point e (identity of G). Recall that for each $X_e \in$ $T_e(G)$ there exists a unique one parameter subgroup $F: R \rightarrow G$ such that $X_e = \dot{F}(0)$. If x = F(t) then $x^{-1} = F(-t)$ and thus $z \downarrow s(F(t)) = F(-t)$. Hence

$$\begin{aligned} \mathbf{z} \mathbf{x}_{\star} \left(\mathbf{X}_{e} \right) = \mathbf{z} \mathbf{x}_{\star} \left(\mathbf{F} \left(0 \right) = \frac{d}{dt} \left(\mathbf{z} \mathbf{r} \left(\mathbf{F} \left(t \right) \right) \right) \Big|_{t=0} \\ &= \frac{d}{dt} \mathbf{F} \left(-t \right) \Big|_{t=0} = -\mathbf{F} \left(0 \right) = -\mathbf{X}_{e} \end{aligned}$$

If follows that for
$$X_e$$
, $Y_e \in T_e(G)$
 $(\psi r_{*e}X_e, \psi r_{*e}Y_e) = (-X_e, -Y_e)$
 $= (X_e, Y_e)$

where (,) is the bi-invariant inner product on $T_e(G)$. That is, Ψ_{**} is an isometry on $T_e(G)$. Note that L_a and $R_a(a \in G)$ are isometries with respect to the bi-invariant metric of G. Since

$$z = x^{-1} = (a^{-1}x)^{-1}a^{-1} = R_{a^{-1}} \cdot z = L_{a^{-1}}(x)$$

for each $x \in G$ $2x_{*a} : T_a(G) \rightarrow T_{a^{-1}}(G)$ may written as

$$\mathbf{z}_{\mathbf{x}_{a}} = (\mathbf{R}_{\mathbf{a}_{a}})_{\mathbf{e}} \cdot \mathbf{z}_{\mathbf{x}_{e}} \cdot (\mathbf{L}_{\mathbf{a}_{a}})_{\mathbf{a}_{e}}$$

Thus Ψ_{*a} is an isometry. In consequence, $\Psi: G \to G$ is an isometry. For each $g \in G$ define σ_g by

-164-

$$\sigma g = L_g \cdot R_g \cdot \mu$$
, that is $\sigma_g(x) = gx^{-1}g$

Then if follows that σ_{g} is the symmetry at g. It is well known (W.M.Boothby, 1975) that for a complet Riemannian manifold M if two isometries $F_1, F_2 : M \to M$ have property such that for some $p \in M$ $F_1(p) = F_2(p)$ and $F_{1_{*}} | T_p(M)$ $= F_{2_{*}} | T_p(M)$, then $F_1 = F_2$.

Using this fact we can easily prove that for a complete Riemannian manifold M and $p \in M$ there can be at most one involutive isometry σ_p with P as isolated fixed point. ///

COROLLARY 3.2. Every point of a connected compact Lie group G is a one parameter subgroup

Proof. By proposition 3.1, G is complete with respect to bi-invariant matrix, and thus there is only one minimal geodesic $p(t) (-\infty \langle t \langle \infty \rangle)$ joining e (identity of G) and $g \in G$.

Let G be a compact connected Lie group. Then each geodesic through the identity e of G is a one parameter subgroup of G (W.M.boothby, 1975)

Thus this geodesic P(t) is an one parameter subgroup.

Hence g is a one parametter subgroup, ///

DEFINITION 3.3. A C^{∞} connection ∇ on C^{∞} manifold M is a mapping

$$\nabla: \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$$

defined by $\nabla(X, Y) = \nabla_x Y$, which is satisfying conditions: For all $f, g \in C^{\infty}(M)$, and X, X', Y, Y' $\in \mathbf{X}(M)$

1)
$$\nabla_{\mathbf{i}\mathbf{x}+\mathbf{g}\mathbf{x}'} \mathbf{Y} = \mathbf{f} \nabla_{\mathbf{x}} \mathbf{Y} + \mathbf{g} \nabla_{\mathbf{x}'} \mathbf{Y}$$

2) $\nabla_{\mathbf{x}}(\mathbf{f}\mathbf{Y} + \mathbf{g}\mathbf{Y}') = \mathbf{f}\nabla_{\mathbf{x}}\mathbf{Y} + \mathbf{g}\nabla_{\mathbf{x}}\mathbf{Y}' + (\mathbf{x}\mathbf{f})\mathbf{Y} + (\mathbf{X}\mathbf{g}\mathbf{Y}')$ on a Riemannian manifold. A C^{∞} connection ∇ is called a *Riemannian* connection if it satisfies the following two further properties;

3) $[X,Y] = \nabla_{\mathbf{y}} Y - \nabla_{\mathbf{y}} X$

4)
$$X(Y,Y') = (\nabla_x Y, Y') + (Y, \nabla_x Y')$$

where (,) is the inner product on M.

Let M be a Riemannian manifold. For C^{∞} vector fields X.Y over M, the *curvature operator* R(X,Y) is defined by

$$\mathbf{R}(\mathbf{X},\mathbf{Y}) \cdot \mathbf{Z} = \nabla_{\mathbf{x}} (\nabla_{\mathbf{Y}} \mathbf{Z}) - \nabla_{\mathbf{Y}} (\nabla_{\mathbf{x}} \mathbf{Z}) - \nabla_{[\mathbf{x},\mathbf{Y}]} \mathbf{Z}$$

for each C^{∞} vector field Z over M, where V is Riemannian connection of M.

TEOREM 3.4. Let G be a compact connected Lie group and let \mathcal{L} be the Lie algebra of G. For X, Y, $Z \in \mathcal{L}$

$$R(X, Y)Z = + [Z, [X, Y]]$$

with bi-invariant Riemannian metric where R(X, Y) is the curvature operator.

Proof. Let ∇ be the Riemannian connection with bi-invariant metric of G. Take $X \in \mathscr{L}$ then $\nabla_x X=0$. In fact, X_e define a unique one parameter subgroup $F: R \rightarrow G$ such that F(0) = eand $\dot{F}(0) = X_e$. For a C^{∞} vector field Y over M.

$$\nabla_{\mathbf{x}_{e}} \mathbf{Y} = \frac{\mathbf{D}}{\mathbf{d} \mathbf{t}} \mathbf{Y}_{\mathbf{F}(t)} \Big|_{t=0}$$

Hence

$$\nabla_{\mathbf{x}_{e}} \mathbf{X} = \left. \frac{\mathbf{D}}{\mathbf{dt}} \mathbf{X}_{\mathbf{F}(t)} \right|_{t=0}$$

F(t) is geodesic and thus

$$\frac{D}{dt}X_{F(t)} = \frac{D}{dt}(\frac{dF}{dt}) = 0$$

-165-

6 Cheju National University Journal Vol. 30 (1990)

This means that $\nabla_{\mathbf{x}_e} X = 0$. Since our metric is left-invariant and X is also left-invariant, $\nabla_{\mathbf{x}} X = 0$ everywhere on G.

Since if X and Y are left invariant vector fields then so are X+Y and [X,Y], we have

$$0 = \nabla_{\mathbf{x}+\mathbf{y}}(\mathbf{X}+\mathbf{Y}) = \nabla_{\mathbf{x}}\mathbf{Y} + \nabla_{\mathbf{Y}}\mathbf{X} \ (\nabla_{\mathbf{x}}\mathbf{X} = 0 = \nabla_{\mathbf{Y}}\mathbf{Y})$$

If X and Y are left invariant, then

$$\nabla_{\mathbf{x}} \mathbf{Y} + \nabla_{\mathbf{y}} \mathbf{X} = 0, \quad [\mathbf{X}, \mathbf{Y}] = \nabla_{\mathbf{y}} \mathbf{Y} - \nabla_{\mathbf{y}} \mathbf{X}$$

and so we get

$$\nabla_{\mathbf{x}} Y = \pm (X, Y)$$

For X, Y and Z in \mathcal{L} , since

$$\nabla_{\mathbf{x}}(\nabla_{\mathbf{y}}Z) = \frac{1}{2}[X, \nabla_{\mathbf{y}}Z] = \frac{1}{2}[X, \frac{1}{2}[Y, Z]]$$

$$= \frac{1}{4} [X, [Y, Z]]$$

$$\nabla_{Y} (\nabla_{X} Z) = \frac{1}{4} [Y, [X, Z]]$$

$$\nabla_{(x, Y)} Z = \frac{1}{2} [(X, Y), Z]$$

we have following;

 $R(X,Y)Z = \nabla_{x} (\nabla_{Y}Z) - \nabla_{Y} (\nabla_{x}Z) - \nabla_{[x,y]}Z$ = + [X,[Y,Z]] - + [Y,[X,Z]] - + [(X,Y],Z] = + ([X,[Y,Z]] + [Y,[Z,X]] + [Z,[X,Y]]) + + [Z,[X,Y]] = + (Z,[X,Y])

REFERENCES

Bangert, V. 1980, Closed geodesics on complete surfaces. Math. Ann. Vol.251, p.83~96.
Besse, A. 1978, Manifolds all of whose

geodesics are closed. Springer.

- Bishop, R.L. 1964. Geometry of manifold, Academic Press, INC
- Boothby, w.M. 1975. An introduction to differential manifolds and Riemannian Geometry. Academic Press.
- Farkers, H.M. 1980. Riemann Surfaces. Springer verlag
- Grove, K.H. Karcher and E. Rub. 1977. A generalized Sphere theorem. Ann. of Math. Vol. 106. 201~211.
- Helgason, S. 1962. Differential geometry and symmetric spaces, Academic Press.
- Karcher, H. 1968. Schnittort und konvex megen in vollstas digen Riemannchen mannifaltigkeiten. Math. Ann. Vol.177, 105~121.

- Kleingenberg W. 1982. Riemannian Geometry. Walter de Gruyter
- Kleingenberg, W. 1971. Geodatischer fluss auf mannifatigkeiten typ. Inv. Math. Vol.14. 63~82.
- Marsden, E. 1973. On completeness of homogeneous Psedo-Riemannian manifolds. Indian Univ. Math. Journal. Vol.22, 1065~1066.
- Ozels, V. 1976. Largest normal neighborhoods. Proc. Amer. Math. Soc. 99,~101.
- Sakai, T. 1977. On the cut loci of symmetric spaces. Hokkaido Math. Vol.6. 136~161.
- Warner, F. W. 1971. Foundations of differentiable manifolds and Lie group, Scott. Foresmann and Company.
- Wolf, J.A. 1964. On the classification of hermitian symmetric space. Journal of Math. and Mechanics Vol.13. 489~496.

國文抄錄

對稱 Riemann 多樣體에 관하여

C[∞] 多樣體上에서 1-媒介變數群과 Lie群을 정외하고, 모든 Compact이고 連結인 Lie群 G는 雙不變 距離 에 대하여 對稱空間이 됨을 보이고 나아가서는 對稱 Riemann 多樣體上의 모든 검들은 1-媒介變數部分群이 되며 Riemann 接續 ∇와 曲率作用素 R(X,Y)의 성질을 이용하여 Compact이고 連結인 Lie群 G와 Lie 代數 앞에서, 앞의 원소 X,Y,Z에 대하여 R(X,Y)Z=↓[Z,[X,Y]]가 됨을 보였다.

: