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I. INTRODUCTION

Let M be a C”manifold, and let
8:RXM—M be a C mapping satisfying the
condition

1) 6(0,p)=p for every peM

2) 8- Bs(p) =9H_s(p)=9s . Bt(p) for every

s,t €R and peM where et(p)=9(t,p)

Then 0 is called a ¢ action or a one parameter
group of M. For each one parameter group
0:RXM—M there exists a unique C” vector
field X, which is called the infinitesinal generator of
6, such that

X, f=Am (£ 0, ¢y @) ()

for each f€C™ (p)
In this case, for all teR and 6 : M—M we

have

B, (x,) =X, ()

where 6, :TM)— T(M) is a map which
commutes the following diagram;

* MMEARE RIS

i

i#

]
TM™) =—T(M)

! o lx
M ——sM

Note that = : T(M) —M is the tangent vector
bundle of M. Hence we have the following
results

1) The infinitesimal generator X of 8 is in-
variant under the action

2) Each orbit of the action 8 is an integral
curve of X :that is

Lo @)= Xo,0)

dt

I .BI-INVARIANT RIEMANNIAN
MATRIX

Let G be a Lie group, For each a €G, let L,
[R,) be a left(right] transformation, that is

L,:G—G, L,(g=ag
and

for every g €G

*x % K RIS XHIR. BEHIR BIAURCl % B,
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R,:G—G, R(g)=ga for every geG

If a C* vector field X of G has the property
that L, (Xg)=X,, for every a,geG, then X is
said to be /kft inmnant. We put
£=(X€ x(M)|X is a left invariant C* vector
field} ’
where X(M) is the set of all C* vector field
defined on the C* manifold M,

Then &is a Lie algebra. In this case Y=T,G)
where e is the identity of G as Lie algebra
(S.Helgason, 1962, W _Klingenberg., 1982), The
Lie algebra & is called the Lie algebra of G

let F:R— G be a group homomorphism,
where R is a Lie group with addition and G is
a Lie group. Then F(R)=HcG is called a one
parameter subgroup of G,

PROPERTY 2.1 Let G be a Lie goup. Then
there is an ome—to~one correspondence between Lie algebra &
and the set of all one-parameter group of G, equally, every
left invariant vector field of G is complete (H, Karcher,
1968)

Let F:R—G be a one parameter subgroup
of a Lie group G and X the left invariant
vector field on G defined by
(=F©)

dF
x"d: tm0

Then we have a unique one parameter group
8:RXG—G (8(t.8) =gF () =Ry, (g))

of G (see property 2.1).

conversely, let X be a left-invariant vector
field of G and 0 : RXG—G the corresponding
one parameter group of G to X. Then
F:R—G, defined by F(t)=6(t,e) is an one
parameter subgroup of G such that
8(t,g) =gF(t), where e is the itentity of G,
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Therefore, there exists the one-to-one
correspandence between T,(G) and the set of
all one parameter subgroups of G. In
consequence, we have the following one-to-one

correspondence ([4]):

£« the set of all parameter group of
G~ T, (G).

Therefore, we can define

F:RXT.(G) —G

such that F is a function of class C™ with
respect to t€R z€T,(G) and F(0,2)=2

PROPOSITION 2.2 For 5t€ER and z€Te(G),
F(st,z) = F(1 =)

dF

proof. Put st=T, Then 9T) T=0=

y

and also

dF| _ dT dF .
Tj_t-t'o_; E:l: Twg ™ sF(0,2) =sz

Hence the map t—F(st,z) is a group
homomorphism and we have
F(st,2)=F(t,sz) .///

Let @:TM)XT(M) —R be an inner product
on a manifold M, that is for each p€&M the
map

O, T,MXT, M —R is a C™-bilinear form
satisfying

) 9,X, Y)=0,(,, X) (symmetric)

2 @, X)20 and @ (X, X)=0~
X,=0 (positive definite) .

Let (U,®) be a local coordinate system of
M. then E = ¢ (;%) i=1,2,~,n is called
the coordinate frame, where p €U, ¢ (p)=(x',%?, -,
x") €R",

It is clear that (E, E,,,E,) forms a basis
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of ’l‘p M) .
We put

¢.E, E)=g;

Then, in Tp(M) we have

¢p(xp' Yp)=£ ‘ ggj(p)aibj
L=
for X,= £ a'E,,, ¥,= _gl b'E,. We put
g, (p)-eeeemrr g, @)
g(p)=< >
gn; (D) eeeemees gnn(p)

which is called a Riemannian matrix of M.
A manifold M with Riemannian metric is
called a Riemannian manifold. 1t is well-known that

every manifold M has a Riemannian metric and
a manifold M is orientable (A, Besse 1978, E.
Marsden 1973)

PROPERTY 2.3. Every Lie group is orientable
(W. M. Boothby, 1975).

Let G be a Lie group, For each aeG., we
define I,: G— G by I (g) =aga™.We can easily
prove the following : For a,beG,

L, =L, R} =R\, LR/L,

Il=L;Rn"' Ilh=ln I
Therefore we can get the following : For X, Y€
&£

mrL, R X=R L. X=R Xe&

@ 1,00=L R X=R.XeL

@ L, (XYD=0X 1, Y] €&

@ R, and I are automorphism of &

(%),

We put [ ,=Ad (a). Then

Ad:G— Aut (&)

defined by Ad(g)=I,, is a function of C%,
where Aut($¥) is the set of all automorphisms
of £,

Let ¢ be an m-form of a Lie group G, If
for all a,geG
Lio,=0, R:D.=0)

then @ is said to be kft imariant (right inuariant) ,

where

L*: A™(T(G)—=A"(T(G))
is defined from L,:G—G.

is both left-and

right-invariant, If a Lie group G is compact

It is bi-invariant if it
and connected, then there exists a unique
bi-invariant volume element (1 such that the
volume of G is 1 (W _M Boothby. 1975)

PROPOSITION 2.4. It is pasible to defined a

bi-invariant Riemannian matrix gh on a compact connected

Lie group G.

Proof. We have note that g, determines a
bi-invariant tensor field of order 2 on G if and
only if Ad(g)g,=@, for all geG (WM,
boothby. 1975). By (%),, there exists a unique
bi-invariant volume element {} of G with the

Riemannian matrix ¢,

Given X,
f:G—R by

Y,€T.(G), define a function

fg)= (Ad(®)*0,) (X,.Y,) =0, (Ad(©)X,. Ad@Y,)

for each g€G and g, (X,.Y)= f,f(@) 0.
Thus,for a€G, we have
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Ad@)* @, Xe,Ye)
=g, (Ad(a)Xe. Ad(a)Ye)
=f.(Ad (@) *®,) (Ad (@)X, Ad(a)Y.) 0
=fc(Ad(a)*Ad (8)* @, (Xe.Ye) O
=fcAd(ga)* Pe (x.,Ye) 01
=[{Ra(&)) 0

Since I, : g =G is a diffeomorphism by (*),,
we have

Jucf® Q=fJIR, &)R*Q.

Note that L.*@=R*0, [ (G)=G, Moreover,
Since R,*Q=0. we have

Be X, Yo) =ff (@) 2=(IR, ()0,
Thus we have
Ad@)*F, Ole , Ye) = B (Xe . Ye)

Since @, is symmetric, positive definit and
bilinear, so is ¢. Hence @ is a bi-invariant
matrix on G, ///

. SYMMETRIC RIEMANNIAN
MANIFOLD

Let M be a connected Riemannian manifold,
If to each p€M there exists an isometry o, : M
— M which is

1) o, is involute (i.e o'=0), and

2) there exists an open neighborhood U of P
such that aplU has the only fixed point P,
then M is said to be Syrmetric
Sometimes P is called the isolated point of a

symmety at P

Let M be a symmetric manifold and let o,' M
— M be a symmetry at P, Then for )geTp(M),
we define

0, T, M) =T, M)

by o, (X)) =-X (W. Klingenberg. 1982) and a
symmetric Riemannian manifold M is complete
(W .M Boothby, 1975)"

PROPOSITION 3.1. Evey compact and
connected Lie group G is the symmetric space with respect to
the bi-invariant metric. Thus with the bi-invariant metric G is
complete.

Proof. By proposition 2.4, G has the
bi-invariant metric. Define Zj5: G —G by Zjs(x)
=x"' for each x€G, If follows that Zr is
involute because that Z{r has only one fixed
point e (identity of G). Recall that for each X, €
Te (G) there exists a unique one parameter
subgroup F:R~—G such that X,=F(0). If
x=F(t) then x'=F(-t) and thus Zs(F (t)) =F (-t) .
Hence

25, (Xe) =, F(0) = = (#F ©))

d
= ;F(-t)

t=o

tmo —F (0) =‘Xe

If follows that for X., Ye. € T, (G
(X, oY) = (Ko, Ye)
=(Xe, Ye)
where (,) is the bi-invariant inner product on
Te (G). That is, 9, is an isometry on T, (G).
Note that L, and R,(a€G) are isometries with

respect to the bi-invariant metric of G, Since
Zs(x)=x"=(a"x)"a" =Ry - zjs- L. (%)

for each x€G '41'._ 1 Ty (G) =T, (G) may

written as
Z*S"f—‘ (Ra.')e .le‘e ' (L"l:)a-
Thus #+, is an isometry, In consequence,

Y. G— G is an isometry, For each g€G de-
fine o by

-J64-
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og=L ‘R, - Ys, that is o (x) =gx'g

Then if follows that o,
It is well known (W.M Boothby K 1975) that for

a complet Riemannian maniftold M if two

is the symmetry at g.

isometries F, ,F,:M—M have property such
that for some p €M F,(p)=F,(p)and F,,|T,(M)
=F,,|T,(M), then F,=F,.

Using this fact we can easily prove that for a
complete Riemannian manifold M and peM
there can be at most one involutive isometry o,
with P as isolated fixed point. ///

COROLLARY 3.2. Every point of a connected
compact Lie group G is a one parameter subgroup

Proof. By proposition 3.1, G is complete with
respect to bi-invariant matrix, and thus there is
only one minimal geodesic p(t)(-oo{t{eo) joining
e (identity of G) and geG.,

let G be a compact connected Lie group,I
Then each geodesic through the identity e of G
is a one parameter subgroup of G
(W .M. boothby. 1975)

Thus this geodesic P(t) is an one parameter
subgroup,

Hence g is a one paramerter subgroup, ///

DEFINITION 3.3. A C* connection § on €~
manifold M is a mapping

v: xMXEM—XM

defined by ¢ (X,Y)=V,Y, which is satisfying
conditions : For all f,geC”™(M), and X, X",
Y. YeXM

D ViepY=1V,Y+£V,Y

2) v,(fY+gY')=fva+gV,Y'+(xf)Y+(XgY’)
on a Riemannian manifold,

A C* connection ¢ is called a Riemannian
connection if it satisfies the following two further

properties;

3) [X.Yl=V,Y-V,X

4 X Y)=(0Y, Y)+(, 9.Y)
where (,) is the inner product on M,

Let M be a Riemannian manifold, For C*
vector fields X.Y over M, the curvature operator
R(X.Y) is defined by

R(X.Y) - 2= ¥,(V,2)-9,(V,2)- Y, ,Z

for each C™ vector field Z over M, where V is

Riemannian connection of M,

TEOREM 3.4, Le G be a compact connected Lie
group and let L be the Lie algebra of G. For X, Y,2€S

RXY)Z =4 [Z[X Y]]

with bi-invariant Riemannian metric where R(X, Y) & the

curvature operalor.

Proof. Let ¥ be the Riemannian connection
with bi-invariant metric of G, Take X € £then
v X=0, In fact, X, define a unique one pa-
rameter subgroup F : R—G such that F(0) =e
and F(0)=X,. For a C* vector field Y over M,

D
'VxeY= dt YF(!)ll-u
Hence
D
Ve X= & Xrofimo
F(t) is geodesic and thus
D D ,dF

;xm= ;‘(E) =0
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6 Cheju National University Journa! Vol 30 (1990)

This means that ¥, X=0. Since our metric is
left-invariant and X is also left-invariant, V X
=0 everywhere on G,

Since if X and Y are left invariant vector
fields then so are X+Y and [X,Y], we have

0=V,,,X+Y)=V Y+ V X(V X=0=V,Y)
If X and Y are left invariant, then
V. Y+VX=0, (X, Y}=V Y-V, X
and so we get
V Y=4(X.Y]
For X,.Y and Z in &, since

V, (V2 =4X, yZI=4(X, $1Y,21]

.

=4X,07,Z])
V,(V,2)=+Y,0X,21]
Vg piZ=+{X,Y1,2]
we have following:
R(X,NZ=y, (V,2)-Vy(V,D)- Vg
= +0X,[Y,Z))-4 (Y, [X, 233
-+([X,Y1,2)
=4+{[X,[Y,Z1+(Y,[(Z,X21+(Z,[X,Y3]}

+40Z,0X,Y]

=40Z,[X. YN
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