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. INTRODUCTION

Liapounsff (7], in 1940, proved that the range
of a countably additive bounded measure with
values in a finite dimensicnal vector space is
compact and, when the measure ic atomfree,
is convex. The next step was taken by Halmos
(5) who in 1948 gave simplified proofs of
Liapounoff’s results, various versions of Lia-
pounoff’'s theorem applied in the 1950's and
1960's and in 1966, Lindensirauss (4] shoriened
the proof of the Liapounoff’s theorem drastic-
ally. In 1968 Olech (6] investigaied that the
case of an unbounded measure wiih range in
a finite dimensional vector space. And in 1969
Ukl (2) showed that the closure of the range
of a vector valued measure of bounded varia-
tion wich values in a Banach space, which is
either reflexive space or a seperable dual
space is compact, moreover, if the measure is
atomfree the range is convex. In 1973 T. Cho
and A. Tong (1) give a necessary and suffic-
ient condition in order that a bounded linear
mapping L'(x#) into a Banach space be compact

where (X, 3, ») was a finite positive measure
space.

The purpose of this paper is to demonstrate
that a bounded linear mapping L'(x) into a
Banach space is compact where (X, X, w) is
an aromfree positive measure space instead
of a finite positive measure srace. And also in
Theorem 3 we give a slightly chort proof of
Theorem 1 of (1.

I. THEOREMS AND LEMMAS

Let X be a o-algebra of seis. By a vector
valued measure we mean a couniably additive
set funciion x# on Y whose values in a topol-
ogical vector space. A sei EEY, is anatom of
u if u(E)+ 0and E'€X, E'CEimply u(EH=0
or u(EN=p(E). p is atomfree if x has no

atoms. We begin with the following lemma.

LEMMA 1. Let (X,Y,u) be an atomfree
positive measure space and let T: L' (u)—
B be a bounded linear operaior where B is a
Banach space. For each real numter ¢ define
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2/ % A

R(O={T(Xu/n(M)): MET, 0<pu(M)<c)

where X is the characteristic function of
M. Then, R(b) is a precompact cet if and
only if there is a real number a with 0<a<d
such that R(a) is precompact.

PROOF. Suppose that there is an a with
0<a<b such that R(a) is precompact. Let y
R, i.e. y=TXy/ n(M)) for scme Mes
Y, with 0<u(M)<b. Since u is atomfree,
there is a disjoint decomposition (M, ...,
M) of M where M, €X and 0< u(M)<a
(=1, 2,..., n.

Hence y=T (Xpy/u(MND=T(Z ;5 Xu,/u(M))

=25 M)/ n(M)) T(Xy /u(MD) by lin-
earity of T

€ C. H.(R(a)), the convex hull of R(a), since

0&ulM) /ulM) & 1, T.% (u(M) /u(M)=1

and 0<u(M)<a.

Therefore the closure of R(b) is a subset of
the set cl [C.H. (R(a))], the closed convex
hull of the set R(a), and R() is precompact
since cl [C.H. (R(a))] is compact.

For a<b the convex hull of R(a) contains
the union of all R(3). This is an immediate
consequence of the lemma 1.

LEMMA 2. For some a>0 the image of the
positive functions of the unit ball of L' (u) is
the convex hull of R(a).

PROOF. If |ifll,=1and >0, then for a given

e>0 there is a simple function X;%,kX,, with
£>0 and 0< u(M)<a such that |Z;2 &

Xy, li=1 and If=X;% k Xu,ll <e since u is

atomfree (i=1, 2, ..., n).

Now T(E.% b Xu)=3 % b s(MITXu,/
w(M)) & C.H. (R

since T4 A M= (1.5 k Xu) du
=124 k Xy ll,=1 and 0<u(M)<a.

Here we give a sligh:ly short proof of Th-
eorem 1 of (1]}

THEOREM 3.
positive measure spac: and let B be a Banach
space. Then a bounded linear ogerator T: L'
(u)— B is compac: if and only if the set
(TXy,/n(M)): MEZL, u(M)>0) is preco-
mpact.

Let (X, T, 1) be an atomfree

PROOF. To prove T is compact it is enough
to show that there ic a positive number e
such that R{a) is precompact by lemma 1.
Suppose the contrary, i.e., none of R(a) can
be covered by a finitz number of e-balls.

Bi(y)=(yEB:lly=3l< ¢}

where B,(y) is the e-ball with the center
at yi.
Let y, € R(a).

¥» € R(a/n)— Uz} B.(3) by induction.

Then (y,} is an infinite sequence and each
»; is apart at least the distance of ¢, and so
has no convergent subszquence. Since y, € R

(a/n) there is a measurable set M, such that
In= T(xux/ﬂ'(A’{u)), (n=1) 2) .o -)

and x(M,) <a/n. Choosz a subsequenceT (s
(Mn(i))] of [ll'(Mn)' such that

M pMyien) < A/2) sMiy) (=12,...>
Let N;=Muir— M. Then
@ N zeMein) —(Matien)
> p(Myir) = (1/2) (M)
=1-2") uMy,D>0 (1=1,2,...).
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Now

I T, /wCNY) = Tt o/ My D

Xn, nt)

M
ST 2N~ 2 !

1 1
w(N) p(Mya)

+ll'(Mu(i+l))

& ITH {r(N)C 2 (Mai»)

<ITh {1-A-2-H+27) by (1) and (2)

=2 | TI—0

as i—oo,
Thus {T(Xu,,,/u (M,,))} has a convergent.

subsequence. This contradicts the hypothesis,
so there is a positive number « such that R(a)
is precompact.

REMARK.
is finite, the space need not te atomfree in.
order that the Theorem hold.

If the measure srace (X, L, #)
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