On Rarely Continuous Functions

Song Seok-zun

Rarely 連續函數에 關한 研究

宋錫準

1. Introduction and Preliminaries

Professor V. Popa [6] has used the concept of a rare set (a set R is *rare* if Int $(R)=\emptyset$) to define a rarely continuous function as follows:

Definition 1.1 ([Long and Herrington], 'popa]) A function $f: X \rightarrow Y$ is rarely continuous at x₁. X if for each open V containing f(x) there exists a rare set R_v with Cl (R_v) $\cap V = \emptyset$ and an open U containing x such that $f(U) \subset V \downarrow J R_v$. And f is called rarely continuous if it is so at each x in X.

The purpose of this paper is to further investigate fundamental properties of such functions. Rarely continuous functions are a natural extension of weakly continuous functions. **Definition 1.2** ([Taqdir Husain]) (1) A function $f: X \rightarrow Y$ is weakly continuous at x in X if for each open V containing f(x) there exists an open U containing x such that $f(U) \subset Cl(V)$. (2) A function $f: X \rightarrow Y$ is said to be *nearly continuous* at x in X if for each neighborhood V of f(x)there is a neighborhood U of x such that $f(U) \subset$ Int(Cl (V)).

Evidently, every weakly continuous function is rarely continuous but the converse is not true ([Long and Herrington]).

Definition 1.3 ([Takashi Noiri, 1978]) A subset S of a space X is said to be *N*-closed to X if for every cover $\{U_{\alpha} : \alpha \in \nabla\}$ of S by open sets of X, there exists a finite subfamily ∇_0 of ∇ such that

師範大學 助教授

S (U_{α}) : $\alpha \in \nabla_0$. If X is N-closed relative to X, then it is called *nearly-compact*.

We refer the other definitions to [Taqdir Husain].

Lemma 1.4 ([Long and Herrington, theorem1]) Let $f: X \rightarrow Y$ be a function. Then the followings are equivalent:

(a) f is rarely continuous at x in X.

(b) For each open V containing f(x) there exists a rare set R_v with $R_v \bigcap Cl(V) = \emptyset$ and an open U containing x such that $f(U) \subseteq Cl(V) \bigcup R_v$.

(c) For each regular-open V containing f(x) there exists a rare set R_v with $Cl(R_v) \cap V = \mathscr{A}$ and an open U containing x such that $f(U) \subset V \cup R_v$.

2. Properties on Rarely Continuous Functions

Theorem 2.1. A function $f: X \rightarrow Y$ is rarely continuous if and only if for each open set V in Y, there exists a rare set R_v such that $f^{-1}(V) \subset Int(f^{-1}(V \cup R_v))$.

Proof. If f is rarely continuous, then for each open V of Y with $f(x) \in V$. there exists a rare set \mathbb{R}_v such that $Cl(V) \cap \mathbb{R}_v = \emptyset$ and there exists an open set U containing x such that $f(U) \subset V \cup \mathbb{R}_v$, which implies $U \subset f^{-1}(V \cup \mathbb{R}_v)$ and hence $x_i \in U \subset Int(f^{-1}(V \cup \mathbb{R}_v))$.

Since $\mathbf{x} \in f^{-1}(\mathbf{V})$.

 $f^{-1}(V) \subset Int (f^{-1}(V \cup R_v)).$

Conversely, if for each open set $V \subset Y$, there exists a rare set \mathbb{R}_v with $\operatorname{Cl}(V) \cap \mathbb{R}_v = \emptyset$ such that

 $f^{-1}(V) \subset Int f^{-1}(V \cup R_v).$

Then by putting

 $U = Int (f^{-1}(V \bigcup R_v)),$

we see that

 $\begin{aligned} f(\mathbf{x}) \in f(U) = f(Int \ f^{-1} \ (V \bigcup R_{\mathbf{v}})) \\ & \subset ff^{-1}(V \bigcup R_{\mathbf{v}}) \\ & \subset V \bigcup R_{\mathbf{v}}. \end{aligned}$

Hence f is rarely continuous by Lemma 1.4 (b).

Theorem 2.2 Let $\{P_{\alpha}\}$ be an open covering of a topological space X, Y a topological space, and f a function of X into Y. If for each α , the restriction $f | P_{\alpha} : P_{\alpha} \rightarrow Y$ is rarely continuous then f is rarely continuous.

Proof. Let $x \in X$. Then there exists α such that $x \in P_{\alpha}$. Let V be a regular-open subset of Y containing f(x). Since the restriction $f | P_{\alpha} = f_{\alpha}$ is rarely continuous, there exists a rare set R_{v} with $Cl(R_{v}) \cap V = \emptyset$ and an open U in P_{α} containing x such that $f(U) \subset V \bigcup R_{v} \cdot But$ then there is an open subset W of X such that

x∈U=W∩P..

But since U is an open set in X (because W and P_{α} are open in X), it follows that $f: X \rightarrow Y$ is rarely continuous by lemma 1.4(c).

Theorem 2.3. If $f: X \rightarrow Y$ is an almost continuous function and

 $Cl(f^{-1}(V)) \subset f^{-1}(V \bigcup R_v)$

for each open V with rare set \mathbb{R}_v such that Cl $(\mathbb{R}_v) \cap V = \mathscr{G}$ then f is rarely continuous.

Proof. For any point x in X and any open set $V \subset Y$ containing f(x), by the hypothesis we have $Cl(f^{-1}(V_{\ell}) \subset f^{-1}(V \cup R_{\nu})$.

Since f is almost continuous, there exists an open U in X such that

 $x \in U \subset Cl(f^{-1}(V)).$

Therefore $f(U) \subset V \bigcup R_v$. That is, f is rarely continuous.

Proposition 2.4. An open rarely continuous function of a topological space X into a regular

space Y is continuous.

Proof. Let $f: X \rightarrow Y$ be an open rarely continuous function. Let V be an open neighborhood of f(x) for x in X. Since Y is regular, there is an open neighborhood W of f(x) such that $W \subset \overline{W} \subset V$. Since f is rarely continuous, there is a rare set R_w with Cl $(R_w) \cap W = \emptyset$ and an open neighborhood U of x such that

 $f(x) \in f(U) \subset W \cup R_w$

Since f is open function, f(U) is open set and so $f(U) \subset Int(W | JR_w) = W \subset V$.

Hence f is continuous.

Corollary 2.5. Let $f: X \rightarrow Y$ be an open function. Then the followings are equivalent;

- (a) f is rarely continuous
- (b) f is weakly continuous
- (c) f is nearly continuous.

Proof. Proposition 2.4 shows that (a) implies (b). Since we have known that (b) implies (c) by [Taqdir Husain, §49 proposition 27], it suffices to show that (c) implies (a). Assume that f is nearly continuous. Then for any x in X and any open V in Y containing f(x) there exists an open neighborhood U of x in X such that $f(U)\subset$ Int (Cl(V)). Let

 $R_v = Int(Cl(V)) - V.$

Then R_v is a reare set with $Cl(R_v) \cap V = \emptyset$. Hence

 $f(U) \subset Int (Cl(V)) = V \bigcup R_v.$

Therefore f is rarely continuous.

Proposition 2.6. Let $p: X \rightarrow Y$ be a quotient function. Let Z be topological space and let g: $X \rightarrow Z$ be a rarely continuous function that is constant on each set p^{-1} (|y|), for y in Y. Then g induces a rarely continuous function f: $Y \rightarrow Z$ such that fop=g.

Proof. For each y in Y, the set $g(p^{-1}(|y|))$ is an one-point set in Z (since g is constant on $p^{-1}(|y|)$). If we let f(y) denote this point, then we have defined a function $f: Y \rightarrow Z$ such that for each $x \in X$, f(p(x))=g(x). To show that f is rarely continuous, let V be an open set in Z. Since g is rarely continuous, there exists a rare set \mathbb{R}_v in Z and open U in X such that $g(U) \subset V \bigcup \mathbb{R}_v$. Since p is a quotient function, p(U) is open in Y. Hence

 $f(p(U)) = g(U) \subset V \bigcup R_v$.

Therefore f is rarely continuous.

Lemma 2.7. Let $f: X \rightarrow Y$ be a function. The following statements are equivalent.

- (a) f is open rarely continuous
- (b) f is nearly continuous
- (c) the inverse image of a regular-open subset of Y is an open set in X.
- (d) for each open subset V.

 $f^{-1}(V) \subset Int[f^{-1}(Int (Cl(V)))].$

Proof. Corollary 2.6 implies the equivalent of (a) and (b). And (b), (c) and (d) are equivalent by [Taqdir Husain, Theorem 11 in §49].

Theorem 2.8. Let X, Y and Z be spaces, A be a compact subset of X and B be a compact subset of Y, $f: X \times Y \rightarrow Z$ be an open rarely continuous function and W be an regular-open subset of Z containing $f(A \times B)$. Then there exists an open set U in X and an open set V in Y such that.

A \subset U, B \subset V and f(U \times V) \subset W.

Proof. Since f is open rarely continuous, f^{-1} (W) is open set in XxY containing AxB. For each (x,y) in AxB, there exist open sets M in X and N in Y such that $x \in M$, $y \in N$ and $MxN \subset f^{-1}(W)$, since B is compact, for a fixed $x \in A$,

there are open sets M_1, \dots, M_n in X containing x and corresponding open sets N_1, \dots, N_n in Y such that

 $B \subset Q = N_1 \bigcup \dots \bigcup N_n$ Let

 $P = M_1 \cap \cdots \cap M_n$

Then P is open in X. Q is open in Y. $x \in P$. B $\subseteq Q$. and $PxQ \subseteq f^{-1}(W)$. Since A is compact, there exist open sets P_1 ,, P_m in X and corresponding Q_1 ,, Q_m open in Y such that

 $B \subset V = Q_1 \bigcap \cdots \bigcap Q_m$

and

 $A \subset U = P_1 \bigcup \dots \bigcup P_m$

It follows that U and V are the required open sets.

In theorem 2.8, if X (or Y) is locally compact, then U (or V respectively) can be chosen so that Cl(U) (or Cl(V) respectively) is compact.

Theorem 2.9. Let $f: X \rightarrow Y$ be an open rarely continuous surjective function and X be a com-

pact space. Then

(a) Y is an N-closed space

(b) Y is nearly-compact.

Proof. (a) Let $|V_{\alpha}: \alpha \in \nabla|$ be any open cover of Y. Then $f^{-1}(V_{\alpha}) \subseteq Int[f^{-1}(Int (Cl(V_{\alpha})))]$ for each $\alpha \in \nabla$ by lemma 2.7 (d) and $\mathbf{X} = \bigcup_{a} \mathbf{f}^{-1}(\mathbf{V}_{a}) \subset \bigcup_{a} \operatorname{Int} [\mathbf{f}^{-1}(\operatorname{Int} (\operatorname{Cl}(\mathbf{V}_{a})))].$ Since X is compact, we have that $\mathbf{X} = \bigcup_{i=1}^{n} \mathbf{f}^{-1}(\mathbf{Int} \ (\mathbf{Cl}(\mathbf{V}\boldsymbol{\alpha}_{i})))^{-1}$ for some finite α_i . Then $Y = f(X) = f(\bigcup_{i=1}^{n} f^{-1}(Int (Cl(Va_i))))$ $\subset \bigcup_{i=1}^{n}$ Int $(Cl(Va_i))$ Hence Y is N-closed. (b) Let $|V_{\alpha}: \alpha \in \nabla|$ be any regular-open cover of Y. Then $f^{-1}(V_{\alpha})$ is open in X for any $\alpha \in$ \bigtriangledown by lemma 2.7 (c), and $X = \bigcup_{a} f^{-1}(V_a)$. Since X is compact, we have that $\bigcup_{i=1}^{n} f^{-1}(V\alpha_i)$ covers X for some finite a_i Then $Y = f(X) = \bigcup_{i=1}^{n} Va_i$ Hence Y is nearly-compact.

Literature Cited

- Asha Mathur, 1979. A note on S-closed spaces. Proc. Amer. Math. Soc. 74(2). 350-352.
- Long P. E. and Herrington L. L. 1982. Properties of rarely continuous functions. *Glasnik* Matematicki 17(37), 147-153.
- Takashi Noiri, 1978. A generalization of perfect functions. J. London Math. Soc. 17(2), 540-544.
- Takashi Noiri, 1974. On weakly continuous mappings. Proc. Amer. Math. Soc. 46(1), 120-124.
 Taqdir Husain, 1977. Topology and Maps, Chapter 7. Plenum Press. New York and
- Popa V. 1979. Sur certaines decomposition de la continute dans les espaces topologiques, Glasnik Mat. Ser Ⅲ 14(34), 359-362.

London.

國文抄錄

本 論文은 Popa 교수가 定義한 Rarely 連續函數의 性質을 研究하여 連續函數의 性質들을 一般化하였다. 더우기, Rarely 연속함수의 새로운 同置 條件을 찾았고, 다른 弱連續 函數들과의 관계성을 調査하였으며 Rarely 連續函數에 의한 N-closed 空間과 nearly-compact 空間의 保存性에 대한 定理를 얻었다.