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I . Introduction

A magma is a set with a binary operation. Some
informations of a magma are in Bourbaki. And in-
formations of semigroups, monoids, and groups
are well-known. Futhermore. we can easily con-
struct a {ree abelian group on any set X.

In this paper.l am going to construct a free mag-
ma on X which is not a semigroup and to make a
free semigroup on X by using an associative con-
gruence relation on the free magma. The free
semigroup is not necessarily monoid. By adding a
new element in the free semigroup. I am also
going to form a free monoid which is not neces-
sarily a group. Finally, by using a congruence re-
lation on the free magma. I intend to set a free
group on X which is not necessarily abelian, and
then to build a free abelian group.

II. A free magma

Given set X, let X;=X, X,= nL_]ll (XpxX,_p) for
all positive integer n, and 1\.1(X)-£—=I_EJl X,. For any
a € M(X). we write l(a)=n if a€ x,. [f a, b e M(X),
l(a)=p, l(b)=q, and p+q=n, and we define #(a,
b)=(a,b)eX,. then #: M(X)x M(X) - M(X) is a well-
defined map, and so (M(X), #) is a magma. The
following theorem tells us M(X) is a gree magma
on X.
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Theorem [ . Let X be a set, (S, m) be a magma,
and f : X = (S, m) be a function. then there exists
a unique magma homomorphism f:(M(x), o
)—{(S. m) such that f(x)zf(x) if xeX (ie. Tis a
magma homomorphism if { (#(a, b))=m(i(a), f(by).

Proof) First, I find a magma homomorphism i:
(M(x), #)—(S, m) such taht f(x)=f(x).

Let f;: X1 —= (S, m) be a map with f;(x)=1f(x).
and f, : X, —(S. m) be a map which if aeX,, be
Xup and 1<p<n-1, then f(a, b)=m(f(a), f,_
o(b)). Then we can define the function f given by

fc)=1{,(c) if l{c)=n. The map fisa magma homo-
morphim : Because if a, b e M(x), l(a)=p, I(b)=q,
and p+q=n. then f(#(a, b)=I(a, b))=f,(a, b)=
m(fy(a). fo(b))=m(i(a). {(b)).

Second, I show uniqueness of . Assume g:
M(X)— (S, m) is a magma homomorphism which
g(x)=f(x) for all xe X and ?#g. Then f(c);fg(c)
for some c € M(X). Let l{c)=n. If n=1, then g(c)=
f(c)=1(c).So n)1. Let C=(a, b), l(a)=p<{n, and Kb)
=q¢{n. Then g(c)=m(g(a), g(b)), By induction on
n, g(c)=m(f(a), f(b))=?(#(a, b)). Hence g(c)=?(c)A
This leads to contradiction. Therefore f=g.

Corollary. If (S, m) is a magma, then there
exists a set X and a surjective magma homomorph-
ism h : (M(x), #)—(S, m).

PROOF. Let X=S as a set and {: X—S be
identity function. By Theorem I, h=F.



2 Cheju National University Journal Vol 20 (1985)

M. A free semigroup

A congruence relation on a magma S is an
equivalence relation R such that (ax, ay) € R and
(xa, ya) €R for all aeS, (x,y) € R If Sis a
magma, then S x S is a congruence relation on S.
and if |Ra|a € A} is a collection of congruence
relations on S, thenaQARa is a congruence rela-
tion on S.

Theorem Il . 1. Let R be a congruence relation
on a magma (S, m). Then (a) m : S/RXS/R—~S/
R defined by m({x]g.[y]r)=[m(x. ¥)]g is a well-
defined map. where [x]g is an equivalence
{congruence] class on S.

(b) P 1 (S. m)—~(S/R. ) defined by p(x)=[x]&
is a magma homomorphism.

Proof) The part of (a). Sujppose [x]r=[x"]r
and [y)xk=[y]x Then (x, x)e R and (y. y) ¢
R. Since R is congruent. (xy. x'y)€ R and(xly.
x’y’) € R Hence (xy. x'y’) € R. So[m(x, y)lx=
[m(x", y)]r.

The part of (b). P(m(x.y))=[m([x]r. [y]r)=
m(p(x), p(y)).

Let S be a magma. A congruence relation R on
S is associative if ((ab)c, a(bc)) € R for any a, b,
ceS. If R" is an assocoative congruence relation
on S, then S /R’ is a semigroup under the binary
operartion [x]Jgr-[y]r-=[xy]x- : Because the op-
eration 1s welldefined by Theorem TI. 1.and the
associativity holds. for ((ab) c. a(bc)) € R’
Futhermore, if we assume |Ra | a€ A| is a collec-
tion of associative congruence relations on a mag-
ma S, then R=ag Ra is also an associative con-
gruence relation on S, and so S/R is also a semi-
group.

Lemma Let X be a set and R.R" be equivalence
relations on X with RER’. Then the diagram.

X P X/R’

1s commutative, where p(x)=[x]r". q{x)=[x]k
and {({x])r)=[x]r’

PROOF. I show f is well-defined. Suppose [x]r
=[y]g. Then (x.y) € R, So(x,y) €R". Hence f (
[X)r)=[x]x=[ylr-=1({y]r).

Theorem T1. 2. Let M be a magma, R={R" |
R’ is an associative congruence relation on M}.
Then M/ R is a semigroup, and if { :M—=S is a
magma homomorphism with S a semigroup, then
there is a unique semigroup homomorphism f; :
M/R — S such that f, ([x]r)=f(x)

Proof) Let Ri={(x. y) | {(x)=1(y), x. y € M].
Then R; is an associative congruence relation on
M and RER; and then the diagram

{
M > S
P h f
M/R %M/R[
g

15 commutative. where p(x)= [x] g, g({x]r)= [x]
Ry h(x)=[x]R. and {([x]Rg)=1(x). Let f,={.g.
We are done.

Let X be a set. Then M(X) is a free magma on
X.Let R=N{R" | R" is an associative congruence
relation on M(X)| . We denote M(X)/R by F (X).
Then the following theorem inform us that F (x)
is a free semigroup on X.

Theorem II. 3. Let X be a set, S be a semi-
group, and f : X — S be a function. Then there ex-
ists a unique semigroup homomorphism 1! Fyx)~
s such that T- j={, where j=X— F(X) defined by
j(x)= [x]r. Moreover, j is one-one.

Proof) By theorem I, there is a unique magma
homomorphism ZIM(X)—vS such that f(x)=1f(x)
for all x € X. Then the diagram

f
M(X) > S

F (X)
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is commutative by Theorem M. 2. Let {=f,. Then
f is a semigroup homomorphism and f(j(x))zf,([x]
R):i(x)=f(x) for alt x € X. [ show f, is unique.

Since { is uniquely determined from f and f, un-
iquely determined by f, so f is uniquely deter-
mined from f. I prove the part of moreover. Let X
=X[J10}. 06X and define a map * (XxX =X
by akxb=o for any ab e X. Then (X.%) is a
semigroup and XCX. Let {: X=X be an inclu-
sion map. Then there is a semigroup homomorph-
ism f - F(X)—X such that {-j=f If x, x' eX.
and j(x)=j(x"). then f(3(x))=1(j(x")). Then f(x)=
f(x’) or x=x". So } is one-one.

Corollary. Let X be a set. X;=X. Xo=Xx X, -
wroand X = 0 X, I a=(x ooy ) € X, b=
,y) € X, we define m.X" x Xt =Xt
y1. . ¥;). Then (X+*
. m) is a semigroup. The inclusion map f : X =X~

v

by m(a, b)=, (xj--+e-+ , X,, yy. soeee

» Xy

extends to @ unigue semigroup homomorphism
f 1 Fu(X)—~ X*such that { - j=f. Moreover, { isa
semigroup isomorphism.

V. A free monoid

Let (S. m) be a semigroup and define S,=
SLljel (where e is a new element not in S), m" !
S; x S;—S, by m’(e. e)=e, m'(e, s)=m(s, e)=s.
and m’ (s, s)=m(s, s) if s, 5" € S. Then m" is
associative on S; and e is an identity. So (S;, m")
is a monoid. Let f 1 S— S’ is a semigroup homo-
morphism. Let define f, : $,—S," by fi(e)=¢" and
f,(a)=f(a) € S. Then f, is a monoid homomorph-
ism. Let X be a set. Then F(X) is a free semi-
group on X. We denote FoX); =Fm(X). The fol-
lowing theorem tells us Fy(X), 1s a free monoid on
X.

Theorem V. 1. Let M be a monoid with identi-
ty ¢ and f : X—M be a function Then there is a
unigue monoid homomorphism {: Fo(x)=M such
tat {+ =f where j :X = F (x)=F(x).

Proof) Since M is a semigroup, by Theorem IIl..
3, there is a semigroup homomorphism f:
F (x) = M such that f - j={. Let {1 Fa(x)— M de-
fined by f(a)=f(a) if a € F(x)and f(a)=e'. Then §
is a monoid homomorphism and foj=1j=11
prove uniqueness of f. Suppose g : Fo(x) =M is a

monoid homomorphism with g« j=f Since
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F.{(x)=F ,(x)and g(ab)=g(a) g(b) for any a. b €
F.(x). so the restriction of g on F.(x) is a semi-
group homomorphism and g-j=f. By unique-
ness for Fy(x). we have g | Fs(x)zf Thus g(a)=
f(a) for any a € F (x) and g(e)=e". Hence ng

Let S be a monoid with identity e. and B be a
subset of S. Let (B)= {x;---x, | x, € Bllle}. k=
1. 2, -+}. Then (B) is a submonoid. we call the
submonoid generated by B. We note that if f:
S—S’ is a onto monoid homomprphism. and B
generates S. then f(B) generates S”. The following
theorem tells us that F(x) is a monoid generated
by j(x).

Theorem . 2. Let X be a set. Then F(x) is
generated by j(x)

Proof) Consider (j(x)) =F is a submonoid of
Fa(x).

Let K : X — F defined by K(x)=j(x) for all x e
X. From K we get a unique monoid homomorph-
ism K :Fo(x)—F with K-j=K. Then
Fm(x)L F ind F.(x). h=incl .K, and h(j(x))
=incl(K(j(x)))=j(x). So h is a monoid homo-
morphism from Fn(x) to Fn(x) with h.j=)
However. the identity map idpa(x) is also a
monoid homomorphism with idpa{x) - j=). Since
F.(x) is a free monoid. h=1idpa(x). Hence F=

Fm(x).

V. A free group

Let X be a set and X be a copy of X under
X - X by x—=. Consider F(XUX). Let R
=MNIR’ | R’ is a congruence relation on
F(XUX) with (J(x)j(x), &) € R and (j(x) i(x). €)
¢ R’}. Then R i1s a congruence relation on
F.(XUXand (j(x) j(x). e) ke R, (j(x))(x). e) €
R for all x € X. Define F(X)=Fm(XUR)/R, and
let K:X—F(X) be defined by K(x)= [(x)] &
Then the following theorem tells us F(X) is a free
group on X.

Theorem V. ].Let G be a group andf : X—=G
be a function. Then there is a unique group homo-
morphism f:F(x)—G such that - k=f

Proof. By Theorem V. 2., JXUX) generates
F.(XUX) Let the canonical map q
F(XUX)— F(X) be defined by q(a)= [a) k. Since
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q is onto, so q(j(XUX)) qenerates F(X). Let B=
q(XUX)). If b € B, then b=q(j(x)))=[j(x)] or
b=q(j(x)=[i(X)]r- Let define
b [k if b="[itx)]x
HEOTRif b= [(X)]r

Since [j(x) j(x)]r=[e]r=[i(X) {(x)]r we have
DO R r=erx)=[{(x)]r [i(x)]k where
erx)= [e]r is the identity in F(X). So bb’=b’b=
egx) Thus (B) =F(X) has inverses. So F(X) is a
group. I find a group homomorphism {. Define g :
XUX =G by g(x)=f(x) if x € X and g(x) =
f(x)"'if * € X. Then g is determined by {. And
then there is a unique monoid homomorphism g :
Fa(XUX)— G such that &+ j=g (Theorem V. 1)
and g(j(x)i(%))=(8() (x)))=(x)g(R)=e. So (j(x) }(X),
e) € Ry= |(x, y) | g (x)=g(y) x. y € F(XUX)
(congruence relation on F(XUX)). Also (3(=)j(x),
e) € R;. So R; = R. By the diagram

Fo(XLIX) §

Fa(XUX)/R h—"Fm(X UX)/Ry

VI. A free abelian group

Remark (1). Let G be a group, S be a subset of
G, and assume that if g € G and s € S, then

gsg™' € S. Let N={1{H | H is a subgroup of G

where f=g - h, T is a group homomorphism un-

iquely determined by f.

Corollary. In Therem V. 1., K:X—=F(X) is
one-one. Proof). Let P(X) be a family of all sub-
sets of X. Then P(X) is a group with the binary
operation A*B =(A-B)}J(B-A) if A, BCX.
Consider f : X — P(X) defined by f(x)= |x|. Then
f is one-one, By Theorem V. .. there is a group
homomrphism f: F(X)— P(X) such that {- K=f.
If K(x)=K(x’) for x, x" € X, then (f - K}x)=(f -

K)(x"), 1. e. f(x)=1(x"). So x=x".

Remark. Suppose we want to construct a group
that has elements a, b such tat a=e, b3=e, and
aba=b? Consider X={A, B}, F(X), and R=|R’
| R” is a congruence relation on F(X) with (A2 e)
€ R;(B%e) € R, (ABA, B2)e R’|. Then F(X)/
R is that group which a=[A]g and b=[B]j.
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containing S}. Then N is a normal subgroup of G.
And any normal subgroup K of G with SEK has
N&K. Furthermore. if f : G— G’ is a group homo-
morphism with {(s)=e for all s € S, ;then
N&ker(f) and f=h - K, where K:G—G/N is
given by K(g)=gN and h : G/N— G’ is given by
h(gN)=1(g).

(2) Let G be a group and (a, b)=a~'b™! ab for
ab € G. Let A, B be normal subgroups of G and
let S=4(a.b)|a € A, b €B|. Then gsg™! € S if
g € Gand s € S Let (A, B)=N{H{|{H is a
subgroup of G containing S|. Let K : G — G/(A,
B) be the homomorphism defined by K(g)=g(A,
B). Then K(a) K(b)=K(b}K(a) forall a ¢ A and b
€ B.If{:G— G’ is a group homomorphism with
f(a)f(by=1f(b){(a) for all a € A and b € B, then (A,
B)<ker(f). Furthermore, if A=B=G and f:
G — G’ is a group homomorphism with G’ abelian,
then (G, G) ker({). and then G/(G, G) is abelian.

By the above Remark (1), (2), we can state and
preve the following theorem.

Theorem V]. 1. Let G=F(X) be the free group
on X, and let K: X~ G be the injective map
associated to it. Let F,(X)=G/(G, G) and let K :
X — F,u(X) be defined by k(X)=k(XXG, G). Then
Fan(X) is abelian, and if {"X — G’ is any function
from X to an abelian group, then there is a unique
group homomorphism f ! F,(X)— G’ such that
f(k(x))=1(x) for all x € X.

Proof. By the above Remark (1), (2), Fu(x) is
abelian. So we find the function {: Fu{x)— G".
By Theorem V. 1. there is a unique group homo-
morphism f:G -G’ such that . K={ on X.
Since G’ is abelian, so (G. G)Cker(f) by the above
Remark. Let P : G —F,,(x) defined by P(a)=
a(G, G) for all ae G, and define T ; F,,(X)—G’by
f(P(a))={(a). Then T is well~defined by the above
remark. Since { is a group homomorphism, so f is
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a group homomorphism : Because

1(P(a)P(b))=1(P(ab)) =(ab) ={(a){(b)=1(P(a))
f(P(b). And then f is determined uniquely by f
which T p=f.

Corollary. In Theorem V[, 1. Fu(X) is a tree
abelian group on K(X).

Proof. Let G’ be an abelian group and f:K
(X)—G" be a function.Then - K :X—=G" is a
function. By Theorem V]. 1., there is a unique
group homomorphism T : Fap(x)— G’such taht f-

K =f-K on ¥X. And so {=f on K(X).
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