A Free Magma, Semigroup, Monoid, and Group

Ko Bong-soo

자유마그마, 자유반군, 단위적 반군과 군에 관한 연구

高風 炙

I. Introduction

A magma is a set with a binary operation. Some informations of a magma are in Bourbaki. And informations of semigroups, monoids, and groups are well-known. Futhermore, we can easily construct a free abelian group on any set X.

In this paper, I am going to construct a free magma on X which is not a semigroup and to make a free semigroup on X by using an associative congruence relation on the free magma. The free semigroup is not necessarily monoid. By adding a new element in the free semigroup, I am also going to form a free monoid which is not necessarily a group. Finally, by using a congruence relation on the free magma, I intend to set a free group on X which is not necessarily abelian, and then to build a free abelian group.

II. A free magma

Given set X, let $X_1 = X$, $X_n = \bigcup_{p=1}^{n-1} (X_p \times X_{n-p})$ for all positive integer n, and $M(X) = \bigcup_{n=1}^{\infty} X_n$. For any $a \in M(X)$, we write l(a)=n if $a \in x_n$. If a, $b \in M(X)$, l(a)=p, l(b)=q, and p+q=n, and we define $\mu(a, b)=(a,b)\in X_n$, then $\mu: M(X) \times M(X) \to M(X)$ is a welldefined map, and so $(M(X), \mu)$ is a magma. The following theorem tells us M(X) is a gree magma on X. Theorem I. Let X be a set, (S, m) be a magma, and f: $X \rightarrow (S, m)$ be a function. then there exists a unique magma homomorphism $\hat{f}: (M(x), \mu) \rightarrow (S, m)$ such that $\hat{f}(x)=f(x)$ if $x \in X$ (i.e. \hat{f} is a magma homomorphism if $\hat{f}(\mu(a, b))=m(\hat{f}(a), \hat{f}(b))$.

Proof) First, I find a magma homomorphism \hat{f} : (M(x), μ) \rightarrow (S, m) such that $\hat{f}(x)=f(x)$.

Let $f_1: X_1 \rightarrow (S, m)$ be a map with $f_1(\mathbf{x})=f(\mathbf{x})$, and $f_n: X_n \rightarrow (S, m)$ be a map which if $\mathbf{a} \in X_p$, $\mathbf{b} \in X_{n-p}$, and $1 \le p \le n-1$, then $f_n(\mathbf{a}, \mathbf{b})=m(f_p(\mathbf{a}), f_{n-p}(\mathbf{b}))$. Then we can define the function \hat{f} given by $\hat{f}(c)=f_n(c)$ if l(c)=n. The map \hat{f} is a magma homomorphim : Because if $\mathbf{a}, \mathbf{b} \in \mathbf{M}(\mathbf{x}), l(\mathbf{a})=p, l(\mathbf{b})=q$, and p+q=n, then $\hat{f}(\mu(\mathbf{a}, \mathbf{b}))=\hat{f}((\mathbf{a}, \mathbf{b}))=f_n(\mathbf{a}, \mathbf{b})=$ $m(f_p(\mathbf{a}), \hat{f}_q(\mathbf{b}))=m(\hat{f}(\mathbf{a}), \hat{f}(\mathbf{b}))$.

Second, I show uniqueness of \hat{f} . Assume g: $M(X) \rightarrow (S, m)$ is a magma homomorphism which g(x)=f(x) for all $x \in X$ and $\hat{f} \neq g$. Then $\hat{f}(c) \neq g(c)$ for some $c \in M(X)$. Let l(c)=n. If n=1, then $g(c)=f(c)=\hat{f}(c)$. So n > 1. Let C=(a, b), l(a)=p < n, and l(b) =q < n. Then g(c)=m(g(a), g(b)), By induction on $n, g(c)=m(\hat{f}(a), \hat{f}(b))=\hat{f}(\mu(a, b))$. Hence $g(c)=\hat{f}(c)$. This leads to contradiction. Therefore $\hat{f}=g$.

Corollary. If (S, m) is a magma, then there exists a set X and a surjective magma homomorphism $h: (M(x), \mu) \rightarrow (S, m)$.

PROOF. Let X=S as a set and $f: X \rightarrow S$ be identity function. By Theorem I, $h = \hat{f}$.

III. A free semigroup

A congruence relation on a magma S is an equivalence relation R such that $(ax, ay) \in R$ and $(xa, ya) \in R$ for all $a \in S$, $(x, y) \in R$. If S is a magma, then S x S is a congruence relation on S, and if $|Ra | a \in A|$ is a collection of congruence relations on S, then $\bigcap_{a \in A} Ra$ is a congruence relation on S.

Theorem II . 1. Let R be a congruence relation on a magma (S, m). Then (a) $\mathfrak{m} : S/R \times S/R \rightarrow S/R$ R defined by $\mathfrak{m}([x]_R, [y]_R) = [\mathfrak{m}(x, y)]_R$ is a welldefined map, where $[x]_R$ is an equivalence [congruence] class on S.

(b) P: $(S, m) \rightarrow (S/R, \bar{m})$ defined by $p(x) = [x]_R$ is a magma homomorphism.

Proof) The part of (a). Suppose $[x]_R = [x']_R$ and $[y]_R = [y']_R$. Then $(x, x') \in R$ and $(y, y') \in R$. Since R is congruent, $(xy, x'y) \in R$ and $(xly, x'y') \in R$. Hence $(x y, x'y') \in R$. So $[m(x, y)]_R = [m(x', y')]_R$.

The part of (b). $P(m(x,y)) = [m([x]_R, [y]_R) = m(p(x), p(y)).$

Let S be a magma. A congruence relation R on S is associative if ((ab)c, a(bc)) \in R for any a, b, c \in S. If R' is an assocoative congruence relation on S, then S/R' is a semigroup under the binary operartion $[x]_{R'}[y]_{R'} = [xy]_{R'}$: Because the operation is welldefined by Theorem III. 1. and the associativity holds, for ((ab) c, a(bc)) \in R'. Futhermore, if we assume $|Ra | a \in A|$ is a collection of associative congruence relations on a magma S, then $R = \bigcap_{a \in A} Ra$ is also an associative congruence relation on S, and so S/R is also a semigroup.

Lemma Let X be a set and R.R' be equivalence relations on X with $R \subseteq R'$. Then the diagram.

is commutative, where $p(x) = [x]_R'$, $q(x) = [x]_R$ and $f([x])_R) = [x]_{R'}$

PROOF. I show f is well-defined. Suppose $[x]_R$ = $[y]_R$. Then $(x, y) \in R$. So $(x, y) \in R'$. Hence f $([x]_R) = [x]_{R'} = f([y]_R)$.

Theorem []. 2. Let M be a magma, $R = \bigcap \{R' \mid R' \text{ is an associative congruence relation on } M\}$. Then M/R is a semigroup, and if $f: M \to S$ is a magma homomorphism with S a semigroup, then there is a unique semigroup homomorphism $f_1: M/R \to S$ such that $f_1([x]_R)=f(x)$

Proof) Let $R_f = |(\mathbf{x}, \mathbf{y})| | f(\mathbf{x}) = f(\mathbf{y}), \mathbf{x}, \mathbf{y} \in M|$. Then R_f is an associative congruence relation on M and $R \subseteq R_f$ and then the diagram

is commutative, where $p(\mathbf{x}) = [\mathbf{x}]_R$, $g([\mathbf{x}]_R) = [\mathbf{x}]_R$, $h(\mathbf{x}) = [\mathbf{x}]_R$, and $f([\mathbf{x}]_R) = f(\mathbf{x})$. Let $f_1 = \hat{f} \cdot g$. We are done.

Let X be a set. Then M(X) is a free magma on X. Let $R = \bigcap |R'| |R'$ is an associative congruence relation on M(X)|. We denote M(X)/R by $F_s(X)$. Then the following theorem inform us that $F_s(x)$ is a free semigroup on X.

Theorem III. 3. Let X be a set, S be a semigroup, and $f: X \rightarrow S$ be a function. Then there exists a unique semigroup homomorphism $\hat{f}: F_s(x) \rightarrow$ s such that $\hat{f} \cdot j=f$, where $j=X \rightarrow F_s(X)$ defined by $j(x)=[x]_R$. Moreover, j is one-one.

Proof) By theorem I, there is a unique magma homomorphism $\hat{f}: M(X) \rightarrow S$ such that f(x)=f(x) for all $x \in X$. Then the diagram

is commutative by Theorem II. 2. Let $\hat{f} = \hat{f}_1$. Then f is a semigroup homomorphism and $\hat{f}(j(x)) = \hat{f}_1([x]]_R) = \hat{f}(x) = f(x)$ for all $x \in X$. I show \hat{f}_1 is unique. Since \hat{f} is uniquely determined from f and \hat{f}_1 uniquely determined by \hat{f} , so f is uniquely determined from f. I prove the part of moreover. Let $\hat{X} = X \bigsqcup |0|$. $0 \notin X$ and define a map $* : \hat{X} x \hat{X} \rightarrow \hat{X}$ by a * b = o for any a.b $\in \hat{X}$. Then $(\hat{X}.*)$ is a semigroup and $X \subset \hat{X}$. Let $f : X \rightarrow \hat{X}$ be an inclusion map. Then there is a semigroup homomorphism $\hat{f} \cdot F_s(X) \rightarrow \hat{X}$ such that $\hat{f} \cdot j = f$. If $x, x' \in X$, and j(x) = j(x'), then f(j(x)) = f(j(x')). Then f(x) = f(x') or x = x'. So j is one-one.

Corollary. Let X be a set. $X_1 = X$. $X_2 = X \times X$,, and $X^+ = \bigcup_{i=1}^{m} X_i$. If $a = (x_1, \dots, x_i) \in X_i$ b= $(y_1, \dots, y_j) \in X_j$, we define $m : X^+ \times X^+ \to X^+$ by m(a, b) =, $(x_1, \dots, x_i, y_1, \dots, y_j)$. Then (X^+, m) is a semigroup. The inclusion map $f : X \to X^+$ extends to a unique semigroup homomorphism $f : F_s(X) \to X^+$ such that $f \cdot j = f$. Moreover, f is a semigroup isomorphism.

IV. A free monoid

Let (S. m) be a semigroup and define $S_1 = S \sqcup |e|$ (where e is a new element not in S), m': $S_1 \times S_1 \rightarrow S_1$ by m'(e, e)=e, m'(e, s)=m(s, e)=s, and m' (s, s')=m(s, s') if s, s' \in S. Then m' is associative on S_1 and e is an identity. So (S_1 , m') is a monoid. Let $f: S \rightarrow S'$ is a semigroup homomorphism. Let define $f_1: S_1 \rightarrow S_1'$ by $f_1(e)=e'$ and $f_1(a)=f(a) \in S$. Then f_1 is a monoid homomorphism. Let X be a set. Then $F_s(X)$ is a free semigroup on X. We denote $F_s(X)_1 \rightarrow F_m(X)$. The following theorem tells us $F_s(X)_1$ is a free monoid on X.

Theorem N. 1. Let M be a monoid with identity e' and $f: X \rightarrow M$ be a function. Then there is a unique monoid homomorphism $\tilde{f}: F_m(x) \rightarrow M$ such tat $\tilde{f} \cdot = f$, where $j: X \rightarrow F_s(x) \subseteq F_m(x)$.

Proof) Since M is a semigroup, by Theorem III. 3, there is a semigroup homomorphism \dot{f} : $F_s(x) \rightarrow M$ such that $f \cdot j=f$. Let $\dot{f}: F_m(x) \rightarrow M$ defined by $\dot{f}(a)=\dot{f}(a)$ if $a \in F_s(x)$ and $\dot{f}(a)=e'$. Then \dot{f} is a monoid homomorphism and $\dot{f} \cdot j=\dot{f} \cdot j=f$. I prove uniqueness of \dot{f} . Suppose $g: F_m(x) \rightarrow M$ is a monoid homomorphism with $g \cdot j=f$. Since $F_s(x) \subseteq F_m(x)$ and g(ab) = g(a) g(b) for any a. b ϵ $F_s(x)$, so the restriction of g on $F_s(x)$ is a semigroup homomorphism and $g \cdot j = f$. By uniqueness for $F_s(x)$, we have $g | F_s(x) = f$. Thus g(a) = f(a) for any a ϵ $F_s(x)$ and g(e) = e'. Hence $g = \hat{f}$.

Let S be a monoid with identity e. and B be a subset of S. Let $\langle B \rangle = |x_1 \cdots x_k | x, \in B \bigsqcup |e|, k =$ 1, 2, ...]. Then $\langle B \rangle$ is a submonoid, we call the submonoid generated by B. We note that if f: $S \rightarrow S'$ is a onto monoid homomorphism, and B generates S, then f(B) generates S'. The following theorem tells us that $F_m(x)$ is a monoid generated by j(x).

Theorem IV. 2. Let X be a set. Then $F_m(x)$ is generated by j(x)

Proof) Consider $\langle j(\mathbf{x}) \rangle = F$ is a submonoid of $F_m(\mathbf{x})$.

Let K: $X \rightarrow F$ defined by K(x)=j(x) for all $x \in X$. From K we get a unique monoid homomorphism $\dot{K} : F_m(x) \rightarrow F$ with $\dot{K} \cdot j = K$. Then $F_m(x) \xrightarrow{\tilde{k}} F \xrightarrow{\text{ind}} F_m(x)$. $h=\text{incl} \cdot \dot{K}$, and $h(j(x)) = \text{incl}(\dot{K}(j(x)))=j(x)$. So h is a monoid homomorphism from $F_m(x)$ to $F_m(x)$ with $h \cdot j=j$. However, the identity map $id_{Fm}(x)$ is also a monoid homomorphism with $id_{Fm}(x) \cdot j=j$. Since $F_m(x)$ is a free monoid, $h=id_{Fm}(x)$. Hence $F=F_m(x)$.

V. A free group

Let X be a set and \bar{X} be a copy of X under $X \to \bar{X}$ by $x \to \bar{x}$. Consider $F_m(X \sqcup \bar{X})$. Let R $= \bigcap |R'| R'$ is a congruence relation on $F_m(X \sqcup \bar{X})$ with $(j(x)j(\bar{x}), e) \in R'$ and $(j(\bar{x}) j(x), e) \in R'$. Then R is a congruence relation on $F_m(X \sqcup \bar{X})$ and $(j(x) j(x), e) \in R$, $(j(x)j(\bar{x}), e) \in R$ for all $x \in X$. Define $F(X)=F_m(X \sqcup \bar{X})/R$, and let K : $X \to F(X)$ be defined by $K(x)=[j(x)]_R$. Then the following theorem tells us F(X) is a free group on X.

Theorem V. I. Let G be a group and $f: X \rightarrow G$ be a function. Then there is a unique group homomorphism $\hat{f}: F(x) \rightarrow G$ such that $f \cdot k = f$.

Proof. By Theorem \mathbb{N} . 2., $j(X \sqcup \overline{X})$ generates $F_m(X \sqcup \overline{X})$. Let the canonical map q: $F_m(X \sqcup \overline{X}) \rightarrow F(X)$ be defined by $q(a) = [a]_R$. Since

q is onto, so $q(j(X \sqcup \bar{X}))$ qenerates F(X). Let $B = q(j(X \sqcup \bar{X}))$. If $b \in B$, then $b = q(j(x)) = [j(x)]_R$ or $b = q(j(\bar{x})) = [j(\bar{x})]_R$. Let define

 $b' = \begin{array}{l} [j(\bar{x})]_{R} & \text{if } b = [j(x)]_{R} \\ [j(x)]_{R} & \text{if } b = [j(\bar{x})]_{R} \end{array}$

Since $[j(\mathbf{x}) \ j(\mathbf{\bar{x}})]_{R} = [e]_{R} = [j(\mathbf{\bar{x}}) \ j(\mathbf{x})]_{R}$ we have $[j(\mathbf{x})]_{R}[j(\mathbf{\bar{x}})]_{R} = e_{F(X)} = [j(\mathbf{\bar{x}})]_{R} \ [j(\mathbf{x})]_{R}$ where $e_{F(X)} = [e]_{R}$ is the identity in F(X). So bb'=b'b= $e_{F(X)}$. Thus $\langle B \rangle = F(X)$ has inverses. So F(X) is a group. I find a group homomorphism \hat{f} . Define g: $X \sqcup \bar{X} \to G$ by $g(\mathbf{x}) = f(\mathbf{x})$ if $\mathbf{x} \in X$ and $g(\mathbf{x}) =$ $f(\mathbf{x})^{-1}$ if $\mathbf{x} \in \bar{X}$. Then g is determined by f. And then there is a unique monoid homomorphism \hat{g} : $F_m(X \sqcup \bar{X}) \to G$ such that $\hat{g} \cdot j = g$ (Theorem [V. 1) and $\hat{g}(j(\mathbf{x})j(\mathbf{x})) = (\hat{g}(j(\mathbf{x}))) = (\mathbf{x})g(\mathbf{x}) = e$. So $(j(\mathbf{x}) \ j(\mathbf{x})$, $e) \in R_{\hat{g}} = \{(\mathbf{x}, y) \mid \hat{g} \ (\mathbf{x}) = \hat{g}(y) \ x, y \in F_m(X \sqcup \bar{X})\}$ (congruence relation on $F_m(X \sqcup \bar{X})$). Also $(j(\mathbf{x})j(\mathbf{x})$, $e) \in R_{g}$. So $R_{g} \cong R$. By the diagram

where $\hat{f} = \bar{g} \cdot h$, \hat{f} is a group homomorphism uniquely determined by f.

Corollary. In Therem V. 1., $K : X \to F(X)$ is one-one. Proof). Let P(X) be a family of all subsets of X. Then P(X) is a group with the binary operation $A * B = (A-B) \lfloor j(B-A)$ if A, $B \subset X$. Consider $f : X \to P(X)$ defined by f(x) = |x|. Then f is one-one, By Theorem V. I., there is a group homomrphism $f : F(X) \to P(X)$ such that $\hat{f} \cdot K = f$. If K(x) = K(x') for x, $x' \in X$, then $(\hat{f} \cdot K)(x) = (f \cdot K)(x')$, i. e. f(x) = f(x'). So x = x'.

Remark. Suppose we want to construct a group that has elements a, b such tat $a^2 = e$, $b^3 = e$, and $aba = b^2$. Consider X = {A, B}, F(X), and R = \bigcap {R' | R' is a congruence relation on F(X) with (A², e) ϵ R', (B³, e) ϵ R', (ABA, B²) ϵ R'|. Then F(X)/ R is that group which $a = [A]_R$ and $b = [B]_R$.

M. A free abelian group

Remark (1). Let G be a group, S be a subset of G, and assume that if $g \in G$ and $s \in S$, then $gsg^{-1} \in S$. Let $N = \bigcap |H| | H$ is a subgroup of G containing S|. Then N is a normal subgroup of G. And any normal subgroup K of G with S \subseteq K has N \subseteq K. Furthermore, if $f: G \rightarrow G'$ is a group homomorphism with f(s)=e for all $s \in S$, then N \subseteq ker(f) and $f=h \cdot K$, where $K: G \rightarrow G/N$ is given by K(g)=gN and $h: G/N \rightarrow G'$ is given by h(gN)=f(g).

(2) Let G be a group and (a, b)= $a^{-1}b^{-1}$ ab for a,b ϵ G. Let A, B be normal subgroups of G and let S= $|(a, b)| a \epsilon A, b \epsilon B|$. Then $gsg^{-1} \epsilon$ S if g ϵ G and s ϵ S, Let (A, B)= $\cap |H| |H|$ is a subgroup of G containing S|. Let K : $G \rightarrow G/(A,$ B) be the homomorphism defined by K(g)=g(A, B). Then K(a) K(b)=K(b)K(a) for all a ϵ A and b ϵ B. If f : $G \rightarrow G'$ is a group homomorphism with f(a)f(b)=f(b)f(a) for all a ϵ A and b ϵ B, then (A, B)=ker(f). Furthermore, if A=B=G and f : $G \rightarrow G'$ is a group homomorphism with G' abelian, then (G, G) ker(f), and then G/(G, G) is abelian.

By the above Remark (1), (2), we can state and preve the following theorem.

Theorem V[. 1. Let G = F(X) be the free group on X, and let $K : X \to G$ be the injective map associated to it. Let $F_{ab}(X) = G/(G, G)$ and let \overline{K} : $X \to F_{ab}(X)$ be defined by $\overline{k}(X) = k(X)(G, G)$. Then $F_{ab}(X)$ is abelian, and if $f \colon X \to G'$ is any function from X to an abelian group, then there is a unique group homomorphism $\overline{f} : F_{ab}(X) \to G'$ such that $\overline{f}(\overline{k}(x)) = f(x)$ for all $x \in X$.

Proof. By the above Remark (1), (2), $F_{ab}(x)$ is abelian. So we find the function $\hat{f}: F_{ab}(x) \rightarrow G'$. By Theorem V. 1. there is a unique group homomorphism $\hat{f}: G \rightarrow G'$ such that $\hat{f} \cdot K = f$ on X. Since G' is abelian, so (G, G) \subset ker(\hat{f}) by the above Remark. Let P: $G \rightarrow F_{ab}(x)$ defined by P(a)= a(G, G) for all $a \in G$, and define $\tilde{f}: F_{ab}(X) \rightarrow G'$ by $\tilde{f}(P(a)) = \hat{f}(a)$. Then \tilde{f} is well-defined by the above remark. Since \hat{f} is a group homomorphism, so \tilde{f} is a group homomorphism : Because

 $\hat{f}(P(a)P(b)) = \hat{f}(P(ab)) = \hat{f}(ab) = \hat{f}(a)\hat{f}(b) = \hat{f}(P(a))$ $\hat{f}(P(b))$. And then \hat{f} is determined uniquely by f which $\hat{f} \cdot p = \hat{f}$.

Corollary. In Theorem V[, 1. $F_{ab}(X)$ is a tree abelian group on $\overline{K}(X)$.

Proof. Let G' be an abelian group and $f: \overline{K}$ (X) \rightarrow G' be a function. Then $f \cdot \overline{K}: X \rightarrow$ G' is a function. By Theorem VI. 1., there is a unique group homomorphism $\overline{f}: F_{ab}(x) \rightarrow$ G'such taht $\overline{f} \cdot$ $\bar{K} = f \cdot \bar{K}$ on X. And so $\bar{f} = f$ on $\bar{K}(X)$.

Literature Cited

Bourbaki, N. 1964. Agebra. Herman.

Clifford, A. H and G. B. Preston, 1964. The Algebraic Theory of Semigroups, vol. 1., 2nd, A. M. S
Lang S. 1984. Algebra, 2nd, Addison-Wesley,
Magid A. 1984. Lecture Note on Abstract Algebra, Unpublished, The University of Oklahoma.

國文抄錄

이 논문에서는 다음과 같은 대수적 대상물에 대한 구조를 연구한다. 즉 (1) 자유마그마 (2) 자유반군 (3) 자유 단위적 반군 (4) 자유군 (5) 자유 가환군