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0. Introduction

H.Herrlich [1] has introduced nearness: spaces
as an axiomatization of the concept of nearness
of arbitrary collection of sets. Since that time,
these spaces have been used for several different
purpose by topologist.

In this paper we will consider a nearness
space (X, £) which does not satisfy the following
condition:

If @VLE§ then @ tor LEE.

We call the space (X,# as a Lodato prenear-
ness space.

In particular, the category of Lodato pre-N-
spaces and N-maps is denoted by LP-Near and
we investigate the basic categorical properties
of LP-Near. And also we try to compare LP-
Near with different structure.

In the present note, category theory provides
the proper tool for constructing some theorems.

1. Categorical Preliminaries

1.1. Definition. A source in a catgeory A
is a pair (X,(f)gp), where X is an A -object

and (f;pX xi)iel is a family of A-morphisms
each with domain X. In this case X is called
the domain of the source and the family (X;), .|
is called the codomain of the source,

1.2, Definition. Let A be a category and
((Y;mp;cp 2 family of ojbects in A indexed by
a class 1, and let X be a set and (f;:X —> Y)
a source of maps indexed by I.

An A -structure £on X is called initial with
respect to (X, (f}), (Yi’"i)iel) if the following
conditions are satisfied:

(1) for each ELf:(X,£) = (Y;,ny) is an A-mor-
phism.

(2) if (Z{) is an A-object and g:Z > X isa
map such that for each i€l, the map f;*g:(Z) >
(Yi’ni) is an A-morphism, then g:(Z$) = (X,§)
is an A-morphism.

In this case, the source (fi:(X,E) - (Y'ni))iel
is also call initial,

Dually we define the final structures.

i€l

1.3. Definition. A category A is said to be
topological if for each set X, for any family
(Y;))ep of A-objects and for any family
(f;:X = Y));c1 of maps, there exists an A -struc-
ture on X which is initial with respect to (X,
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1.4. Definition. Let A be a category.
(1) The A-fibre of a set X is the class of all
A-structures on X.
(2) Ais called properly fibred if it satisfies the
following conditions:
(i) for each set X, the A-fibre of X is a set,
(i) for each one-element set X, the A-fibre
of X has precisely one element,
(iii) if £ and n are A-structures on X such that
Ix:(X0) = (X) and 1y:(X;n) = (X,8)
are morphisms, then §=n.

1.5. Definition. Let C be a category and A
a subcategory of C. For any X€C, a C-mor-
phism f:X = A is called the A-reflection of X
if AEA and for any A'Eé and a C-morphism
gX - A, there exist a unique A-morphim
f:A - A' with f-f=g. If every object of C has
the A-reflection, then A is called a reflective
subcategory of C.

1.6. Definition, Let P be a class of p-mor-
phisms of C and let A be a reflective subcategory
of C. If A-reflection of C belongs to P, then A
is p-reflective subcategory of C.

The following propositions are well-known,

1.7. Proposition. If A is a properly fibred
topological category and B is a full isomorphism
closed subcategory of A, then the following are
equivalent:

(1) B is bireflective in A.

(2) B is closed under the formation of initial

sources,

1.8. Proposition. Let A be a full, isomor-
phism-closed subcategory of properly fibred
topological category B. Then the foliowings
ar equivalent.

(1) Ais bireflectivein B.

(2) A contains all discrete and indiscrete
objects of B and A is closed under the
objects of B and A is closed under the
formation of subobjects and products in
B.

II. A Lodato Prenearness Structure and
A Semi-Closure Structure

2.1. Notations. Let PX denote the power set
of X and let P>X=PPX. For any subset ¢ of
P*X we write @EE for @EE, CL A for {xEX:
{{x} , At€%} and Cl€ for {ClsA: AE@}. For
subsets @, L of PX,

@< iff each set AE@, there is BE [ with
BCA,
@VL={AUB : AE@, BE[).

2.2, Definitions. Let X be a set and § C PX.
Consider the following axjoms:

(N1) if @<[f and @E¢ then fE¢.

(N2) if N@#¢ then @E.

(N3) ¢p#¢#P2X.

(N4) if (@VL) E tthen @E§ or [E¢

(N5) if Cl @<§ then @EE,
£ satisfying (N1), (N2) and (N3) is called a
prenearness structure on X. & satisfying (N1),
(N2), (N3) and (NS) is called a Lodato pre-
rearness strucrure on X. Finally satisfying (NI)—
(N5) is called a nearness structure on X. The
pair (X,§) is called a (pre-, Lodato pre-) neamess
space -shortly: a (pre-, Lodate pre-) N-space- iff
¢ is a (pre-, Lodato pre-) nearness structure on X.

2.3. Definitions, If (X)) and (Y,n) are
pre-N-spaces, then-a map f:X - Y is called a
nearness preserving map-shortly: an N-map- f:
(X,0) = (Y,n) from (X,§) to (Y,n) iff @¢ implies
f@&n. The category of pre-N-spaces and N-maps
is denoted by P-Near. Its full subcategory whose
objects are Lodato pre-N- spaces is denoted by
LP-Near. Its full subcategory whose objects
are N-spaces is denoted by Near.

2.4. Proposition. If X is a set, (Yymy) is.a
family in LP-Near indexed by a class I, and
(X = Y))cq is a family of maps, then § =
n{ fi‘(ni):'ﬁl} is a Lodato prenearness structure
on X, initial with respect to (X,(ficp (Y
Mier-
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Proof. First of all,, let’s show that § € LP-
Near.

(N1) Suppose @Ef and L<& Then fl@)en,
for each i, and f(£) < f(@) for each i. Thus
f(LEN; for egch i, and so L8

(N2) Let N@#¢. Then Nf(@)#p for each i,
which implies f;(@)En; for each i. Thus @EB.

(N3) Since Ng#p, g€ by (N)and{$}Z¢.

Hence ¢#p#P*X.

(N5) Let Cly@€B. Then fi(Clﬁ@ ¥En, for
each i. Since Clﬁfi(@'Kfi(Clﬁ@) for each i,
Clf(e)En; for each i. This implies f(@)n;;
ofs

It remains to show that B is initial with to
Xfier Ypier

Suppose for any (Z{)E LP-Near and g:Z >
X is a map such that for each i, the map fg:(Z,
) = (Y;my is an N-map. Then for any @€{
f@En; for each i and hence gw€f, This
completes the proof.

2.5. Theorem. The category LP-Near is a
properly fibred topological category.
Proof. It is obvious from proposition 2.4.

2.6. Remark. Final structures in LP-Near
can be described in the following way:if Y is a
set, (Xi,ii) is a family of Lodato pre-N-spaces,
and (fiX; > Y)ip is a family of maps then
7={ BC PY: NB#¢}U[ U{f(E)€EL] is a Lodato
prenearness structure on Y, final with respect

to (X;épies (i Y)-

2.7. Proposition. (1) For each set X there
is a disrete Lodato prenearness structure 3 on
X, characterized (up to isomorphism) by the
fact that f:(X,8) = (Y,n) is a morphism for any

object (Y,n) € LP-Near and any map £:X > Y. -

(2) For each set X there is an indescrete
Lodato prenearness structure 8 on X, charac-
terized (up to isomorphism) by the fact that
f:(Y,n) = (X,8) is a morphism for any object
(Y,n) € LP-Near and any map f:Y = X.

Proof, (1) For any set X, let p be the final
structure on X with respect to the empty source.

Then it is obvious that ¢ is the discrete structure

on X.
(2) Dual of (1).

2.8. Definition. Let X be a set, A function
a:PX — PX is called a semi - closure structure [4]
on X if it satisfies the foliowing conditions:

(1) o¢)=9,

(S2) ACaA for each AEPX,

(S3) ACB implies aATaB for each A,BEPX,

(84) A = oaA), for each AGPX.

The pair (X,a) is called a semi-closure space.
For a convinience, we shall agree to use a as
{ACX:@A=A}.

2.9, Definition. If (X,«) and (Y,&') are semi -
closure spaces, then a map f:(X,0) - (Y.a)
from (X,a) to (Y,&) is called s<continuous iff
for each A€d', 1 (AEa.

Note that the identity map is s-continuous,
and the composition of two s<ontinuous maps
is also s-continuous, The category of semi-clo-
sure spaces and s-continuous maps is denoted
by SCL. The semi-closure structure on X is a
generalization of the more familiar Kuratowski
closure operator on X.

2.10. Remarx. Let (X,@)€ SCL, then X ¢€a,
and for every AiEa (€l), i’;JIAIEOL. But the
intersection of two elements of a is not an
element of a.Therefore a is not a topology on X.

2.11. Proposition. Let (X,0)€ SCL. Define
AETa iff for each BEa, ANBEa. Then Ty is a
topology on X.

Proof. It is ebvious ¢, XETa since ¢NB=¢,
XNB=B for each BEa. Let A,, A;€7,. Then
ANBE7, and A,NBET, for each BEa. But
ANA;NB C oA NA,NB) ©  a(A NB)N
oA, NB) = (A;NB) N (A;NB) for ‘each BEa.

Then A;NA3NB =a(A;NA;NB) for each
BEq, and hence A;NAET . Let AEr, forany
€. Then o((VA)NB) = o UBNAY) = La
(BNA,) for each €I and BE€a. So U AEr7 .

This completes the proof. i€l
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III. The Main Theorem

3.1. Therem. Thecategory LP-Near is bire-
flective in P-Near.

Proof. Suppose (f:(X.9 ~ (Yi,ﬂi))iel is an
initial source in P-Near and for each i€l, (Y8 €
LP-Near.

Let’s show that § satisfies (N5). Suppose
Clﬁ@Eﬂ.

Then Clg@Ef;! (8;) for each i, and so fi(ClB@)
€p; for ea«:{la i : :

Since Clﬁ(fi@) < fi(Clﬁ@), Clﬂ(fi(@))Eﬂi for
each i. But B, is a Lodato prenearness structure
on Y; for each i f(@%Ep,; for each i. Thus
@Ef! (B, for each i, and (X,g) is an object of
LP-Near.

This completes the proof because of pro-
position 1.8,

3.2. Theorem.
Jlective in LP-Near.

The category Near is bire-

Proof. For any (X,8) € LP-Near, we define
£=£(B) as follows:

@ € { iff there exist @, @,, ..
with @, V@, Ve, ., @ <@

We claim that ¢ is a neamess structure on X.

(N1) Let £L<@ and @ €¢, Assume that
LEE. Then there exist @, @,, ..., @_ inf With
@ V@,V, .. .V@,<f<@Hence @EE  which it
a contradiction. Thus £LE§

(N2) Suppose that N@#¢p and @ €E, Then
@, v@,V ... V@ <@, for some @, @,, .., @,
in . But @V .. V@,<@N@ and we have
N@ E€E. This implies N@=¢. This is a contradic-
tion.

(N3) By (N2), &#¢.

, @, in B

Since B+#¢, we may

choose @EE with @<@. Then @=Fand so &4P2X.

(N4) If @E and L €F, obviously @VLEE,
(NS) Let @t. Then@,V .. V@ <@ for

some @,, ..., @_ in B, 'Note that for any BE@,,
n
1<i<n, we haveiizl{{x}, B;}<{{x}, U, B;)and

n n
so Clg(UB;)C .U ClgB;. Now V(o BE@)
<{CLA: AS@)

But {CIﬂBi:BlE@i}eE, 1<i<n, and so CIE@EE.
Therefore (X,£)E Near, where £=£(8).

Let 1x: (X,8) = (X,£) be the identity map.
If @E¢ then there exists @, ..., @€,in g with
@V .. V@&,<e. Thus @§ and lx@=@ €B
Hence 1, is an N-map. Take any object (Y,n) €
Near and take any N-map f:(X,§) =+ (Y,n). It
remains to show that fi(X,£) - (Y,n) is an N-
map. Take @n. Then f™ (@)EB and ! (@)<f!
(@). So that f' (@)EE.

3.3. Proposition. LP-Near is a subcategory
of P-Near containing all discret and all indiscrete
spaces and being closed under the formation
of subobjects, products in P-Naer,

Proof. It is obvious from proposition. 1.8.

3.4. Definition. A pre-N-space (X, £) is called
regular iff @(< )EE implies @ €§, where

@ (<) ={BCX: there exist AE@ such that
{ A, X-B} EE).

3.5. Proposition. Every regular pre-N-space
is a Lodato pre-N-space.

Proof. Let (X,£) be a regular pre-N-space.
We must show that ¢ satisfies (N5). Suppose
@CPX with {CLLA:A€@} €t Assume @EE.
Then @‘(<£)E§ because of being regular, Take

any BE@(<£), there exist AE@ such that {A,
X-B}Et If xEX-B then { A,{x}} €E, which
implies xECLB and also CI,ACB. So we have
@(<E)<{C1$A:AE@]. Thus @(<E)E$. This is

a contradiction,

3.6. Definition. A semi-closure space (X,a)
is called symmetric iff xEa{y} implies yEa{x}
for each pair (x,y) of elements of X. The cate-
gory of symmetric semi-closure spaces and s-
continuous maps is denoted by S-SCL.

3.7. Proposition. Let (X, B) be a Lodato
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pre-N-space. Then the map Cl ﬂ:PX - PX is
a symmetric semi-closure structure on X.

Proof. We shall show that ClB satisfies (S1)-
(S4).

(S1) By (N3), {#, (x}} &8, This implies

(S2) Suppose x€A for each ASPX. Then
N {{x}, A} £¢, which implies {{x}, A}€EB.
Thus xEClgA, and so ACC1,A for each AEPX.

(S3) Let ACB for each A,B €PX and let
xEClﬁA, Then {{x}, A}=Band {B, {x}} <
{{x}, A}. And also |B,{x}}=g. Hence
ClﬁACCIﬂB.

(S4) "For cach AEPX, ClgA C C14ClgA).
To show Clﬂ(ClﬂA)CCIBA, pick any xEC13
(C1gA). Then{ { x}. ClﬁA }€B. Since { Clﬁ{x},
ClﬂA}<{{x},ClﬂA},we have {Clﬁ{x},ClﬁA}Eﬂ
and also { {x}, A }EB because of g satisfying
(NS). .
It remains to show that Clg is symmetric.
If ¥Clg {y}, then {{x}, {y}}=A. But({x},
(V}) < {{¥}, {x)}, which implies yEC14{x}.
Hence C1 gis symmetric.

3.8. Proposition. If (X, «)ES-SCL, then
there exists (X, ) € LP-Near such that a=Cl 3

Proof. Let’s define g as follows: @&g iff N
{aA:AE@} 5.  Let’s show that (X, g LP-
Near.

(N1) Let £<@, If@ € then N{a A:AEC@}Fp,
which implies N {aA:A€E@}CN{aB:BEL} and
N{aB:BEL}#p. ie. LEB.

(N2) Suppose N@#p. Then N {A:AEG@}+#
é. Since N{ A:AE@ } CN{aA:AEE}, @EB.

(N3) Since N{¢}=¢, ¢} €L This implies
B#P? X. Since ap=¢ and Np#p, f7¢.

To verify (N5), we first will prove a=Cl
If xEaA for each AEPX, than a{x} N\ aA#p=
{{x}, A}e8, xEClBA. If yEClgA for each
AEPX, then a{y} N aA#¢ Take any x€afy}N
aA. Then x€a{y}, which is implies yEa{x].
Thus yEa{x} <aA. i.e. yEaA.

(NS) Suppose {CIBA;AE@’ }E€B.  Then
ﬂ{quﬁA):AGw_ J#9. N {oaAA G2} #£9; {aA:A
€ &} #¢; LE€B

3.9. Definition. A Lodato pre-N-space (X,f)
is called a Cﬁ-Lodato pre-N-space if it satisfies
the following condition:

If@€f then N{C1A: A€ @ ) #p.

We denote the category of CB.]_odato pre-N-
spaces and N-maps by CLP-Near.

3.10. Theorem, S-SCL and CLP-Near are
isomorphic as categories.

Proof. Define a functor F:5-SCL - CLP-
Near as follows: for any (X, ®& $-SCL, F(X,a)=
(X, By), where B = {@ CPX:N{ aA:AGa } ¢}
and for any f:(X,a) - (Y, a') in S-SCL, Ff=f:
(X, By) ~ (Y, By'). Then obviously (X, f,)E
CLP-Near, and since for any ¢€g N {aA:
AE@}¢ and f is s-continuous, hence N {a'f(A):
Ac@} #¢. ie. f(@)€P,.

Therefore Ff=f:(X, B,) = (Y, By is an
N-map.

Define a functor G: CLP-Near — S-SCL
as follows: for any (X, f) € CLP-Near, G(X,f)=
(X, Clp) and for any f:(X, §) = (X, §) in CLP-
Near, G=f: (X, Clg) > (X, Clg).

It is obvious (X, Clg) € S-SCL and Gf=
f:(X,Clﬂ) =+ (X, Clg) is an N-map.

It remains to show that GF=id, GF=id.
One can easily prove that o=ag and Fﬂaﬁ,

hence GF(X, e)=(X, a) and GF(f)=f, FG(X, B)=
(X, B) and FG(f)=f. This completes the proof.

3.11. Remark, Theorem 3.11. is analogous
that the category T-Near of topological N-spaces
and N-maps and the category of R,-Top of R,
topological spaces and continuous maps are

isomorphic, 1]
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