The topics investigated herein depend on the fact that,
in sufficiently heavily dbped N type semiconductors, the
collective excitation frequency of the electron gas can be
comparable to or greater than the characteristic vibrational
frequencies of the host material. This suggests the possibility
that coupled modes may be found between the electron
plasmon and the phonons of comparable ferquencies. For
example, at the appropriate free camrier density — 10%7 to
10" electrons cm™ in III-V compounds — the electron
plasma frequency is comparable to the longitudinal optical
(L0) phonon mlcyuency,and the plasmons and phonons
form coupled modes. Such behavior was first predicted The equation of motion of an electron in a parabolic con-
by Gurevich et al, by Varga and by Singwi and Tosi (Gure-
vich, 1962; Varga, 1965; Singwi, 1966). Definitive experi-
mental verification followed shortly thereafter in a variety
of polar semiconductor, which investigated Raman scattering
spectra resulting from'interaction of the incident radiation
with mixed phonon-plasmon modes. (Mooridian, 1966;
Pinczuk, 1971; Scott, 1971).

In this paper we discuss the role of electron-electron
interactions in the LO phonon mediated infrared absorption

1/1(82), in the interacting electron gas-phonon system. This
can be related directly to the absorption coefficient ofS2).
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Many Body Effects on the Optical Properties of Semiconductors

Sung-rak Hong

Summary

Introduction

Drude dielectric constant and Hamiltonian

Eg (Drude, 1900).

We discuss the influence of finite electron densities and electron-electron interactions on optical properties of N type doped
semiconductors.

Here Q the incident radiation frequency. To orient the
reader, we present a discussion of a simple phenomenology
of the absorption process.

L

Without free carriers, the onset of absorption occurs for
an incident photon energy, Q (we set h = 1 everywhere),
equal to the band gap energy, Eg. However, as described
by Drude early this century, free electrons that undergo in-
elastic collisions in a characteristic time 7, provide a me-
chanism for absorption of radistion less energetic than
The explanation is purely classical.

duction band characterized by an effective mass m* is
3 > -
m*X + X/re= ¢E |
where E is the electric field at X. Solution of Eq. (1) yields
an expression for the drift velocity
X =¢E T/m* ( 1-iQr),

if E has the form Eoeim.. If one relates the conductivity to
the drift velocity by nex=c'E, one obtains the Drude con-

by doped N type polar semiconductors. We will be con-  ductivity formula:
cerned with doping strengths such that the electron plasma ne’s,
o ()= —5 ,
frequency is comperable to the LO phonon frequency, m (1—191;5
leading to the possibility that mixed plasmon-phonon modes where 7 is the electron density.
will participate in the absorption process. Our procedure Application of Maxwell’s curl equations with J=oF and
will be to calculate microscopically the photon life time, B=e§ leads to
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the Drude dielectric constant. Here we have encountered the
classical electron plasma frequency defined by
wp’ =4ane* [ e, m* @)

An expression for the absorption coefficient is easily
obtained from Eq. (3). With k? = Q?e(Q)/c?, for Q7 > 1,
an approximation valid for much of our discussion, we have

_ e .
K== (lﬂc..apz 128%7,)

The energy of the radiation field has a spacial dependence
proportional to the square of the electric field which varies as

- -
Imk)* X Thyy we obtain the Drude expression for the

absorption coefficient.
2

4mne
()=

T mte PP () ©

This relation will enable us to obtain the electron relaxation
rate once we have determined the absorption coeffiicient
from the microscopic caR¥lation which follows.

we first define our model by writing down the Hamil-
tonian which includes a description of the basic excitations
and thetr interactions. This Hamiltonian is

H'HL*'HE*HEL"HEE*HER"HR )

where H , Hp, and Hp are the Hamiltonians for the phonons,
the conduction electrons and the radistion fleld in the
presence of the background dielectric constant e_ of the
crystal. (By e_ we mean the contribution to the dielectric
constant from interband transitions. We shall always be
concerned with photon frequencies well below the gap here;
the method of including interband transitions into the
treatment explicitly is discussed in reference (Jensen, 1973)).
Then Hp y is the electron — LO phonon interaction, Hpp
the electron — electron interaction in the rigid lattice, and
Hgg the interaction between the electrons and the radiation
field.
We have for these terms the explicit forms

Hy =2 X o
BT S % ()
Hp = w S b +¥%) (%)
k kx
Hp = S @ 2, +%) )
kA kA kA

Here m* is the band structure effoctive mass, wy y the
LO phonon frequency (we will be concerned with phonon
wavelengths sufficiently long that depression in the phonon
spectrum is unimportant), and u(l-cs = ck/\/e,_ , with ¢ the
vacuum velocity of light and X a polarization index. Finally
C;;(CE»), etc. are the annihilation (creation) operations
for the electrons, and the other elementary excitations.
Wehaveseth=1.

For Hg| we have

Hgp = Id’iwmngG’)&;(i’). (8a)

where N

. KX
vE=Z C, (8b)

P or VY

is the electron field operator,

-

VEL=E i 7o @)dpn @) @)

q

with 5, (@) = b — b1 and % (4) = (4ne/e_q)lng ¢*?/
Mw, V)® is the Frdhlich coupling constant. (Hats are
used to distinguish the second quantized operators from
ordinary c-numbers.) In 7.,(7{), ng is the number of unit

cells/unit volume, e* the Bom effective charge, and M is
the reduced mass of the unit cell. The electron-electron
interaction term is of the form

1 oWt ] +
Hpp=, Z A c. .,C Cc,C 9
with
\A @) =4ne/e_q*V

Finally, for the electronsadiation interaction we have the
-
F- Aterm

Hpp=- =/ @ X PO @ XD - FI®® (0

where ¥(®)(?) is the Bloch function of the electrons in the
conduction bands. We now show that Eq(10) is equivalent
1o a similar expression, but with the true electron mass
replaced with m* and the Bloch functions replaced by the
plane wave states defined by Eq. (8b), provided the electron
states are near the conduction band edge. The proof rests on
a simple application of I'g P perturbation theory.
In Eq. (10), K(;{) is given by

- 2nc? - >
K= 2 [ Vol " I@IR@ET
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where e(q)) is a polarization vector and A @» = LN +
aqu. Thus we can rewrite Eq. (10) as

Hep=-% 1 |21 ®i@nE@YT @) a2
ER™ "¢ qxle_vﬂ(q) i C q q), (12)
where
@=L 5 ¢t seR v ®@) AT
m 3°, Y= Vo -
kKK k
ng’)(i’) (13)

We expand wﬁ’)&’ ) about the zone center of the conduction
k
band;
b - ﬂ‘("; 1 ’
|¢,i(;)(,'{)>c_e [|0>c+m ;z o>,
<0|R-3'0>¢ }

soc'eo'v

(14)

Here C and 7 label the conduction band and all other bands,
respectively. £ (€ Oy) is the energy at zero wavevector of
the conduction (v) band, and '0>c (I0>,7) is the electron
state at zero wave vector of the conduction band. The prime
in the summation in Eq. (14) denotes omission of the con-
duction band. Rewriting Eq. (13) in terms of Eq. (14), and
retaining up to first order i’-’p’ terms we find

- 1 + _li’;.-* .7,
1() = — X g X
@= l_(g:? < c_,{gou e 7
&’.» ik - - > —
ST X 10> + <ole "‘e‘q'xb’e‘k x
(1 10>,<0IK-F 10>,
mw Z ] (15)
moy €0 Eyo
- = *
<0lkep 10> T ae
+ Ly 7____£____c ,y<0|e'Ik ' X eiqx
m .y £eo- Y0

- -
f,’eik'x I0>c}

Evaluation of the matrix elements that contain exponentials

in Eq. (15) leads to
rs . 1 +
I (q)-ﬁ zC

lgsly
I'4 f+a I{k+mz

Y eco'cyo
- 2 -
[<O0lp |0>7.7<0|k-p 10>, 16)
=+ L - -
+ <OIK-Flo>; <olF o> ]}

One further rearrangement of the terms in the square bracket

enables us to write
K 17
I@=3¢, .70 an
k

where we have used the definition of the scalar effective
mass( Kittel, 1963)
-
<oIp 10>,
€

-
¢ 7<o|p lo>,

1_1.2 .
P mtm T (18)

co”£yo

When Eq. (17) is put into Eq. (12) we obtain the same
expression that results from replacing m by m* and the
Bloch electron by the free electron operator in Eq. (10):

R JERVEOAD FIE (9

Our task is to find the effect of the interaction terms
on the lifetime of a photon in the system, and to relate
this to the absorption coefficient.

HER= -

Formalism

In this section we dreive a formal- expression for the
absorption coefTicient by calculating the lifetime of a pho-
ton in the interacting system. The calculation is carried
out within the framework of many body theory. Specifi-
cally, we calculate the imaginary part of the photon self
energy which can be related to rp(ﬂ) directly. This is anaio-
gous to the procedure followed by Mills and Burstein (Mills,
1969) in their treatment of Raman scattering in insulators.
An alternative approach would be to calculate through
diagrammatic analysis the conductivity o(§2), and relate
this to the absorption coefficient through Egs. (2) and (5).
We begin by defining the imaginary time photon Green’s
function:

Py @, 0 =- <T@, et @, 0)) >, (20)

where Tr is the Wick imaginary time ordering operator,
and the angular brackets denote statistical averaging over
2 complete set of states. We have used

@\ =M, +at et @)
‘6)\ QA
Straightforward calculation of Eq. (20) when H is taken
to include only Hg, HL and Hp, yields the standard result
T w7

- —- W,
PP@ 1= -5, [<a@>@ ¢ +e )

~w_T w_T
+e G pr)re Q 9(-1)} . @
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g . 1) is the Bose-Einstein occupation

S, Bw

Here n{Q)=(e
p
number. The periodicity of PM'(Q,T) allows us to write
P Q. iwp)

Py @1)=g" T eiont @3)

where wn=21m/B. Here ﬁ=l/kBT with k Boltzmann’s

constant and T the absolute temperature. Evaluation
of the Fourier transform
: -
P @.dwg) = [ Pared 7 P ,r @, 7) (24)
yields
O 3 20
v(Q iw, )—-5 b9 (25)
wh +wp

It is the generalization of Eq. (25) to include interactions
of the photon with the electron gas-phonon system that we
are concemed with. We know that the effect of the interac-
tions will be to modify Eq. (25) by causing the addition of
a self energy term in the denominator, so that the full

photon Green's function can be written
- 2w,

3

w%+w;+2w

P@,iw)= . @8

37 (@ i)
where n(a,iwn) is the photon proper self energy. We have
utilized the fact that for crystals with a cubic point group
the radiation in the long wave-length limit is purely trans-
verse, 30 that P, :(Q iwy,) is diagonal in the polannuon
index, and have suppresed A in the equation for P(Q fep).

The Dyson equation which can be solved to obtain Eq.
(26) may be represented as shown in Figure (1), where the
crosshatched bubble is the photon self energy.

The analytic continuation of P(a, iwp) to P(a, Q+iy),
where p is a real infinitesimal, contains the information
about the photon lifetime which we require. Before carrying
out a detailed analysis of the photon self energy, we outline
how we obtain from Eq. (26) the photon lifetime and the
absorption coefficient once n(a, jwn) is known.

Using the relation

wa =CQ/Ve_
we have
P @,0tm
@ -2CQ Ve,
=CIQ2

- O e ~2ic e (@, B 9] 42ie w07 " Q.9

@n

Here we have written

1@, Qi) =1, @Q, Q) +im, @, 0). @28)
We rewrite Eq. (27) as
- -20Q Ve,
P@Q, Q)= )
ATy R(@Zie_wm, @a @
where
g =¢_ [1-2w6 T (Q )/Q?] (30)

is the real part of the dielectric constant. The pole of P(—d,
Q) is shifted off the real frequency axis by the imaginary
part of the self energy. With the real time photon pro-
pagator, P(a, t) related to P(a, Q) by

P@ 9=5 Jiwd P @ @), @1

we see that §(Q, t) (and thus the vector potential and elec-
tric field) decays like e*2"p, where we have written the
complex frequency for which the denominator vanishes as

Q=0 +il27, (2

Of course the energy density decays as etiTe.

By setting
the denominator of Eq. (29) equal to zero, and expressing

the complex freqency as in Eq. (32), we have
CQ* - (@ +i27) € (g +i2Tp) $ 2w m,
N Q
Q.9)=0. (33)

Assuming that the pole is not too far from the real axis,
the imaginary part of Eq. (33) can be rewritten

. 2wy, GX)
(34)
T @ 0 2er ()
P n[e ) + >0 ]

We related 1/Tp(0.) to the abosrption coefficient a(S2) by
e(Qyr(2) = Vg(£2), the group velocity of the photon
at frequency Q. Noting that

V= Ve, leale )" @s)
we have, finally,
, €W 3
a()= C_\/e_k = (Q, Q) 36)

We not proceed to evaluate ﬂl(a, 2) by diagrammatic
methods. A very helpful guide in this analysis is the diagram-
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matic representstion of the self energy when there are no
electron-electron interactions present. To lowest nonvani-
shing order in electron-phonon interaction, the self energy
can be representeded in Figure (2). The dashed lines re-
present the bare 10 phonon propagator given by the zero
order approimation to

D (i) = farelen” <T, (D opn(®) 1> (37

where.ppn(r)= M7y M7 A straightforward calculation

pn
shows that
-2w
D, (iw,) = Lo (38)
Wi, twy

The bubbles represent the particle-hole propagator in the
free electron gas. It is given by

x, @, i92,)=-2 I GRiw)G K+Q, iw, +i9,),

B

k,lwn (3 9)
where G(l—(’, iwp) is the free electron propagator which
satisfies

G (K, iw ) = [iwg - (EK) -w) )" (40)

Here u is the chemical potential of the electron gas. The
factor of two in Eq. (39) accounts for the electron spin.
£(K) is electron energy.

Since our concern is for incident radiation of vanishingly
small wave vector 6, the first and last terms in Figure (2)
contribute no imaginary part to the self energy and are of
no interest to us. This is a consequence of the small 6

limit of x 4Q, ©) :
Q2

o

tim x, @ - @)

which is purely real.

Mills has shown that the remaining three terms of Figure
(2) lead to the second order perturbation theory results of
Jensen. In this treatment one has the photon absorbed by
excitation of a conduction electron, mediate by sacttering
of the electron from an LO phonon, as shown in Figure (3).

Using standard diagrammatic procedures, we find that
the contributions to the phoion self energy from terms a,

b and c in Figure (2) are given by
s) i =_1. i'd X)*
" Q.10 = fz_i "G () my € K)*72 (@

x D(iwm) G , iwn) G* (K, iwn + im)

xG (K +q, iwn +iwm* ilm) , (42a)

3 )= L > >
72(Q, iQm) 5 iz:?i i(fn m, &) mg &) 75 (@

iwm

x D(iwm) G? (K, iwn) G (K+ q. iwp + iwm)

x G (K, iwn * iQm) (42v)
and ’
@ m) = gr 2, 2 ms® m @497 @
kq !} iwm h
x D (iwm) G (K, iwn) G (K, iwn +iQm)
xG@ﬁ',mn+iQm+iw
x G (K+q, iwn + iwm) (42c)

In these expressions, § = l/ks'r, iwp = 2ni(n+1/2) kBT
is the fermion frequency of the finite termperature many
body formalism, and iy = 2mim kgT s the boson
frequency.

Also

—op(k)-'e(

%o oa -
V) fN- Y @)
Q
is the matrix element of the KK term, and V& = K/m*
is the group velocity of the Bloch electron of wave vector.
Our task is to generalize the approximation to the self
energy in such a way that includes the electron-electron
interaction while reducing to Eq. (42) when Hgg is set to
zero. The first step is to define an effective electron— electron
interaction which includes both the Coulomb term HEE' and
the Frdhlich interaction term HEE' In fact we can represent
just such an interaction diagrammatically as shown in Figure
(4). This propagator, I‘(ﬁ', iwg), is just the RPA effective
electron-¢lectron interaction which includes the phonon
propagator as well as the Coulomb interactions.
A natural generalization of the photon self energy

n(a ,im) = n(')(a, iQm + 1r“”(6 Lim + w(c)(a, i2m)
(44)

given by Eqgs. (42) and (44) is obtained by replacing the
product of the phonon propagator D(iwy) and 1:)(?1’)
everywhere by (T, iwy;). As will be demonstrated below,
however, retaining only the three terms of Eq. (44) is an
unsatisfactory approximation. Thp reason is that upon
letting the Frohlich coupling strength, 10@, approach

— 159 —



6 ¥ 3

zero, leaving just an interacting electron gas, "1(6' Q) re-
mains non zero. But as is well known, an electron gas
characterized by a parabolic dispersion relation between
electron energy and wave vector is unable to absorb radia-
tion (Hopﬁed 1965). Thus we require our approxunmon

for 1r(Q i) to satisfy the constaint _5‘"_'.0 n (Q Q)-+0.
]

We have guessed the form of the additional terms in 1r(Q.
i2m) necessary to build into the self energy this momentum
conserving constraint. The diagrams corresponding to these
terms are the last two of Figure (5), which is a representation
of our approximation to the photon self energy. Our guess
was motivated by the repeated apprearance of the two
terms, (d) and (e), with the first three terms, (a), (b) and (c)
in the literature. Indeed, as we shall see below, the approxi-
mation for the photon self energy given in Figure (5) satisfies
the momentum conserving constraint when 70@’}*0, and is
the approximation we shall calculate below.

Before presenting the calculation for the photon self
energy we comment on the structure of the effective elec-
tron-electron interaction. The expression corresponding
to Figure (4) is given by

. V@) + 74(@) D (iwm)
lﬁv "*’m) =
1V @) + @) D (iwmX, @, iwm)
45

The dielectric constant, e(q, w), which characterizes the
modification of the bare Coulomb potential by the interac-
tions of the electron gas-phonon system, can be defined by

\Y @
NG, w)= —= (6)
e(Q,w)
where
4 2
Voou @ =g @)
Using Eq. (45) in Eq. (46), we find, after some algebra,
2
€@, w=¢_ dne? Q@ w+ 4""cc‘ (48)
- ()
¢ %o M (@l - w?)

Here w,, is the TO optical phonon frequency at q ->0. We
note from Eq. (46) that e(c_f, w) vanishes at the same fre-
quencies for which there are poles of P@’, w); these are the
normal mode frequencies of the interacting system, so
I‘(c_f, w) can be regarded as a propagator that describes the
collective excitations of the system. When 7, is set to
zero, the pole of l’(c_f, w) occurs at the wave vector depend-

ent plasma frequency, while the Landau damping of collec-

tive electron excitations is accounted for in the region of

(ﬁ’, w) space for which the imaginary part of X, (ﬁ’, w) is
non zero.

We now tumn to the calculation of t(a, iQm) given by
7(Q,iQm) = n(‘)(a, im) + w(b)(a, if2m)
+ 709G, iam) + ¥ DG, inm) + »XG, iom),
(49)
where each term on the right is represented by a diagram is
Figure(5).
We begin with the diagrams in Figure (5) corresponding
to 7® and 7(®). These have the fom (for small O, with a
factor of two for spin)

. - 2 -+ -+ -
@G, iam) = —ﬁ?}" i‘%n m(k, mg(K)*P(q, iwm)
kqjom
X G(K , iwn)G? (K , ion + iS2m)

- -
X G(k +q, iwp+iwm +i2m) (50a)

"G, i) = 32,—1‘ L5 2 mg(, mg®rn@, ive)
X G*(K, iwa)G(K , iwn+i2m)
X G(k +q, iwaHwm ) (50b)

We rearrange 7((Q, iQni). Using the form of G(¥, Z)
given by Eq. (40) we have the identity

O, iwn)G (K, iwntism) =—L- 16, iwn)
-
- G(k, iwgy+Qm] (51)
This may be used to split 73X, im) into two distinct

parts w(“)(a, i2m) and (22 )(6, iim):

5 mz(KY* 1@, iwn’)

i2m

730, itm) = L I,
8 kqlwn

X G(K, iwn)G (K, iwn*if2m)

X G(K+q, iwpHwm Hwm ) (52a)
and
— — —»| - i
2@, igm)=— 2 Iz mg®)mzE)*1Q, iwa)
i ilm
k q Iwr:

X GR+7, iwq Hm+iwm )

X G*(K, iwn +i2m) (52b)
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We will presently see that #(82) & exactly cancelled by
a piece of w(b).

The summations over intemnal frequencies are next con-
verted in the usual fashion into contour integrations. After
performing the sum over iwa in 20,

- g ®©)mg (K)*
w(")(Q, ilm) = %E’ —(_19.—)%_— (fK)-AK+q)]

-1
X I M) (@)
1
¥ mtion +e(K)-e(K+q) ]
(53)
We rearrange n(b)(a,iﬂm) in a similar fashion.
This gives
O, iam) = 2@, iompa®D @, i0m),  (59)
where
mg ®)mg ®)*
b - __ Q
2013, in i) = E"’W ___mm @, iwpy,)
jwp,
X G, iw, +iQ G, iwy)
x GR+q, iwp, +iwg) (552)
and
» 2 mg®)mz®)* .
202)@, i) = 3 r(::._’ ‘Z:)n —m g, iwy)
1wm

X G*(R, iw )G(K+7 , iwp Hwy,). (55b)

We now shift w by 2, in #(62) anq obtain the identity

22) = 2(82)  Thugwe have that the sum of these two self
energy terms reduces to 2@r(®) = £@1)47 (1) | perform.
ing the sum over iw, in #(®1) just as we did in Eq. (53)
yields after letting jwp, iwm+iﬂm in the result,

@@, 10, + @, e,

=_2

i )1 E’(T my ﬂng(i')‘ X [m - f(ﬁ"ri’)l

1

l —
K i oD o)

X [NQ, iwg) - NQ, iwy, 4]
where f(K) is the Fermi Dirac number density f(i')=

@EE )y 1

To combine the result in Eq. (56) with the contributions
from diagrams (d) and (e) in Figure (5), it is convenient to
split the right hand side of Eq. (56) into two parts using the
explicit form of I, iwg). One has

(s6)

20 4 40®) = ["(a)‘m(b)]l + ["(l)ﬂ;(b)l I 57
where
®n®); < Gy L (mmom-
x [f(K) -fK+q)]
X [____l—_
1wm*€(f)—€(Y )

1
iwy*ifly +e(®) +e(K +7) ]

V@, iwm) - V@, iwn*iy)
V@, 10 @ i) 1Y@, i 11 (@ - 0 H2))

(58a)

and

T mg@mg @)

(iﬂm) ﬂg-»u.:

X [f®) - f&+q)] x (f(l?)-f(kﬁ)]

1 1
X (inmmm+e(li' (K +Q) i re(R)-¢(K: =

1 1
e @) iy e B )
va, iwm)V(cr wp Sy, )

G, i@, )] [1-V@, i HO X @, iy H )]

(58b)

where V@, iwp) = V @)+ 7A@D,lwr) -

We tumn now to n(®). Using manipulations similar to

those above we obtain,
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93 mg ®)mg ®+q) o] — - - : ]
(Q.iQ,) = Tmpl? .2 m i, oo +e(R) -e(K+q) iw, +e(K) -e(+3)
; 1
(EEHE D] (NG, i@, i +6)] P - ]
X o 52, e o) 69 @ty e®) -e®+F) i re®) -+ Q)
and

Again using the explicit expression for [(q, iw,;) we rear-
(c). 2
range n--7: ®)& -
0@ ) By, l'c'zk':"ﬁ’iﬁm

). 10> = G iy D4 ,
0@ 0= @ e G i, ) X [fR)- {ED)] [P) - (R +3))

mé-(l':') mc—zo(f'ﬂ';)‘

where X IQ, iw NG, iwy, Hil) (625)
@10 =gy T, 2 mg®Img @) ,
B i 0 I R— |
iy, Hiop, te@)-e(®¥) iy e(R) -e(K+q)
x [FRME+J)) .

1
; 1 e -e®+q) i D
X liw +e@)-e®q) i Sl e (@) +e( ﬁ_{)l(ma) Qo te(@)-e®+7)  iwp +e(®)

(V~(ci' yiwm) — V@' » iy L)
" 1@, i@, o] [1-V(3, oy 2, @ ey )]

Putting all the results together yields ﬂm = 1m+1§r),
where

, 2
0@, ie,,) = B g’é’ 2 z mma(f)

and
f0G 0, - gy ek, RN KGR g @y @) -m @D
x (1) -] [1R) -AR+3)]
x [f) -f0 +Q)] [7K) -AR +q Y ] X 1XQ, o )P @ oo 4i,) (633)
X I, w )G, iwp, +i,) (61b) ' | :
1 I N o Ry D) o) o8
Vo0 @) -€@7) oy telR)-eB¥0) |

1
iy 80 l) ) iy re®) @)

1 -1
X[ 0,3 -7 ) o re®) <o)
and
(c1),(c2
We note at this point that n )(ﬂ )) is identical to ( . _ 2
[n(‘)ﬂ(b)]] x [n(')ﬂ(b)] , with the replacement of a "’T)(ﬁ’ i, = B2, )? E}Eﬁ’ if’m ) ®
single electron-photon matrix element m—-(i'f’) bymg @),

X [mg (®43) -mg ()] * x [(R) - 10+3))

The remaining terms 79 and () are evaluated just
as the earlier ones. Performing the sums over the fermion

internal frequencies yields results that may be written x [iwmmm+€® ) i‘m]mw
W@ y=-—2-3x = s @mz @) V(" Q. iwm) - V(T iwy)
m ﬂ(lﬂ )’m?—»lu mg “ TG i )xo(?f T

x [f0) -fR+DI N, i )@, i ) (623) “1vG, ko H2X, @, oy H0, )]
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anncem»(k’)ae i m3(?+§') my(K) + my(X)

(l'(' +¢'f) 0 for electrons in a parabolic band, and
5" vanishes identically. We thus have that (™) = 2§D
One may cast n{T) into the form

M@, i0,) =

1 2
= ¥ m3@)13@
(92,8 3w Q °

m
. IDo)-Doficos 2]

(64)

. (%@, iyt )%, (@, i)
1-Y@, iwy, +iQ )%, @ iwp, HiR)]

It is evident that in the absence of electron phonon coupl-
ing, we find ﬂ(T)(iﬂm) vanishes in the limit as 6 - o, for
electrons in a parabolic band. This is insured by the factor
of 72(Q) that has been isolated by the manipulations here.

The last step is to perform the sum over, which we calcu-
late in the standard fashion. We define

1 [Dy (i, )-Do(ico )]
U@, e ) =5
@ 1% “wmllvafnw @, i)
@, iwm Q) - X,@, iwyy)] (65)

X —=
[1-V@ 1w 1L )Xo @ iwy )]

= -;—E ﬁ(q,z if2 )l
kom
Since both x,, «. Z) and D(z), the analytic continuations
of the function defined by Egs. (38) and (39), respectively,
are analytic everywhere away from the branch lines along
the real z axis, we write

Baning - ok 20M) 4 g

Ww—Z

where C is the contour shown in Figure (6).
Since UG, 2, i2) falls off sufficiently fast as |z| + =,
we have, upon performing the sum over ico,,

U@, i) = 2—,1" f: dwn(w){ﬁ(a’, wie, i)
—U(' w-ie, i) + U(q w-ileie, i)
- U@, wi, -ie, mm)i . 67

where n(w) is the Bose-Einstein number density, n(w) =
(eﬁ“’— 15" |, and € is a positive infinitesimal quantity.

As outlined in the discussion preceding Eq. (27), we are
interested in the analytic continuation of U( .nm) to
U@, Q2+i4). Thenwith A(q,2) = (I - V(@. )Xo, 2)J",
Eq.(67) becomes

U@, a4 = fdon(w) | A @, w42") [0, @, w0
—xo @ @) X (D, (@) - Dy (@) A g, wh)
- (o @ w@* - x, @, w1 ) x(D, (wrah)
~Dy WNAG, )] + AT, w-2) [(x, (@, w-2)
~Xo @, &N XD, (w-0) - Dy (©")) AE, ")
~ (%, @, w-2) - x, @, ) (D, (@)
~Dy @A@, W)} (68)

where the + () sign indicates +i (<i), with 4 a positive
infinitesimal frequency.

In the first half of the terms in Eq. (68) we change the
integration variable to w-£2/2, while in the remaining
terms we change to w+2/2. Then, using the relations

x, @ - wtid) = F] @ w) ¥ F; @, w)
=Xg @, wFiy), (692)
D, (~wti) =D (wFX) (69b)
and
A@. —wr) =A@, wFy) (69¢)

which follow from the eveness(oddness) with respect to
w of F{(q, w) (F3(q, w), Eq. (38), and the definition of
AT, 2), respectively, we find, after some straightforward
manipulations,

Iy UG 2= 1 futnlw-912) - n(wra/2))
x (R [A @, *@/2)A @, -9/
x(x, @, 022" - x, @, w-9/2))
X (D, (w02/2") - D (w-912)) ]
-R,[A@, w-YD)A@, w-0/2")
x(x, @, w-2/2%) x, @, w-942))
x(@, (@-2/2%) - Dy (- 7)1} (70)
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Further ilgebnk: rearrangement enables us to write a final
form for the imaginary part of #M(@ Q+x), the analytic
continuation of given in Eq. (64):

Iy ™0 @ 040 = 5, L my? @) 73@)sinh (60/2)

X "____i‘_x__— b /\(

S S, ,) ) o U {A G %
+10) Dy (x4 | X1y [ A@ x )%, @ x4
+Hia)| Iy {A@ x40 % @, x g Dy (x g

H) Xy [AG xpuy) |, an
where we have used
Xo=x+aQ/2 (712)
with o=t1.

Finally, using Eq. (71) in Eq. (36) for the absorptoin
coefficient, and averaging over the direction of Zf, we obtain
2¢*sinh (82/2) 5~ dx
3o/e, m*2Q® o sinh(fx,/,)sinh(8x /)

XZa' Y @ I x (A x4 Do (xgeig))

-

q

a(Q)=

—\M/\-P . P(E {w)
W P
@ M [ & (G.1wm)

Figure 1. Diagrammatic representation of the Dyson equa-
tion satisfied by the photon Green’s function. The
single and double lines represent the zero order
and exact Gree’s functions, respectively. The self
energy part is represented by the crosshatched
bubble.

x I { A@ x5t X0 (3. x5 +10)
-—lm A@’,x_oﬁa()xo@’,x_oﬂiOD(x_aﬂlO]
x In {A@. x4} - (13)

This expression for the absorption coefficient is our principal
result. Further calculation must proceed numerically due to
the form of xo(t'f, w) and A(Q,w). Before caryrying out an
analysis of Eq. (73), however, we consider two limiting
cases in which our expression for the absorption coefficient
reduces to forms appropriate to simpler models.

Concluding remarks

In this paper we saw that, contrary to the light scattering
studies, the absorption spectrum in the Drude tail is nearly
unaffected by coupling of the electron plasma with the
lattice LO phonon. The leason was clear: The excitations
needed to take an electron from its virtual excited state are
those with characteristic wave vector considerably longer
than the Thomas-Fermi wave vector. In this small wave-
length region the electron gas is unable to form a well de-
fined collective oacillating mode that can couple with the L0
phonon, and the excitations are just the nearly bare phonon
and the single particle electron states.

<O
+ Q by
§ D
A
+ O

Figure 2. Lowest nonvanishing self energy terms when the
electron-electron interaction is taken to vanish.
The dashed line represents a phonon propagator.

K =
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Figure 3. An illustration of a second order process which +
provides the LO phonon mediated contribution

to. The electron is coupled to the LO phonon
by the Frohlich interaction in polar materials.

VWA =Sl S S S

)
]
! Figure 5. Approximation to the photon self energy used in
1 -0 (; +! ) calculating the absorption coefficient. This is a
)

mementum  conserving  approximation  that
vanishes when the strength of the electron phonon
interaction goes to zero.

AVAVAVA RS MC AL B @ S A T3

]
§ T\ (§r R~ @ D, tiw / \
[}
]
WU~ = (23" s 3\
Figure 4. A generalization of the ellective electron interac- )
tion obtained within the RPA is seen to describe o= %Y =]

the interaction of the electron plasma with the \ /
phonon lattice. ) wor-

Figure 6. Contour of integration in Eq. (66).
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