Transferrin Polymorphism in Korean

I. Phenotypic Distribution of Tf in Jeju-do Population

Moon-you Oh

韓國人에서의 Transferrin(Tf) Polymorphism에 관한 研究

I. 濟州島人 集團에서의 Tf의 表現型 分布에 대하여

吳 文 儒

Summary

Genetic Polymorphim of transferrin (Tf) in Jeju-do (Korea) population was studied by prolonged isoelectric focusing (PAGIF) of human sera on polyacrylamide gels. In these samples (n=364) three common phenotypes, TfC1, C2-1, and C2, were observed only, and the alles frequences were calculated as following; TfC1=0.7198, TfC2=0.2802. Heterogeneous rate was 0.4066.

Introduction

Transferrin(Tf or Tr) was discovered by Homberg and Laurell in 1945 'and independently by Schade and Caroline in 1946(Putnam. 1975). The function of transferrin is transportation of iron from blood to tissues 'and is regulation and control of iron absorption and protects against iron intoxication. And transferrin is returned to the circulation after unloading its iron in the reticuloendothelial system. When saturated with iron, transferrin has a pinkish color. Since transferrin normally is only about 30% saturated with iron, serum changes from yellow to yellowred on the addition of ferrous iron.

When it was discovered, the common form of transferrin was transferrin C because it was

originally detected as the third component in the beta-globulin region in starch gel electrophpresis of human serum(Smithies 1957, 1958, Horsfall and Smithies 1958). When the first transferrin variant was discovered in the serum of Negroes and Australian Aborigines, it was named tranaferrin D because of its slower mobility.

Many authors have been reported the genetic polymorphism and geographic distribution of human transferrins. Sutton and Jamieson(1972) are the most recent to review the chemistry and physical properties of transferrins. Recently, Beckman et al(1980) presented the results of a study of the relatioship between transferrin C subtypes and spontaneous abortion.

A listing of human transferrin variants in order of decreasing mobility based on a summary by Giblett(1975) is given in Table 1(Plasma

^{*} This study was done by the support of the Ministry of Education.

2 논 문 집

Proteins Vol.1, p.297).

Fig. 1, from Sutton and Jamieson(1972) gives a diagramatic representation of the mobilities in starch gel electrophoresis of 21 of the variants (Plasma Proteins. Vol. 1, p. 298).

Fig. 1. A diagram showing the relative electrophoretic mobilites of the inherited variants of human transferrin (Reproduced from Putnam 1975).

Table 1. Genetic variants of human Transferrins*
--

Transferrin	Source of first sample
BLae	New Guinea native
BGoldsmith	India(Goldsmith population)
BO-1	Amercan White
BO-1	Navajo Indian
BAtlanti	Greek White
B1	English White
' BLambert	American White
B1-2	Italo-African
BMadiga	India(Madiga population)
B2	Canadian White
B3	Japanese
C1	German White
C3	German White

C2	German White
DAdelaide	Australian White
Do	American Black
DWigan	English White
Do-1	English White
DMontreal	Canadian White
DChi	Chinese
D1	American Black
DFinn	Finnish White
D2	African Black
D3	American Black

** The transferrins are listed in order of increasing electrophoretic mobility(i.e., BLae has the fastest migration rate). (Modified from Table V. of Putnam, 1975)

And recently, two common subtypes of the Tf C allele were explained as Tf C1, C2 by Kuehnl and Spielmann(1978) after isoelectric focusing of sera on polyacrylamide gels. And in their study, the distribution of the phenotypes Tf C1, C2--1, and C2 provided a good fit to the Hardy-Weinberg Equation.

In 1979, Kuehnl and Spielmann revealed further genetic heterogeneity of the transferrin system (Tf) by prolonged focusing(PAGIF) of human sera on polyacrylamide gels (pH 4-6.5), and one of the two common subtypes of Tf C, designated previously as Tf C1, was split into Tf C1 and the new subtype, Tf C3. The gene product of Tf C3 had an isoelectric point between C1 and C2.

In this work, the author report the result of the study on transferrin polymorphism in Jeju-do population by the method of isoelectric focusing of sera on the thin layered polyacrylamide gels (PAGIF) as recommended by LKB, Bromma, Sweden(LKB application note 75 supplied with the Multiphor apparatus) with some medifications.

Materials and Methods

The thin layered gels($1\pi\pi$) were prepared as followings; 3.75 \mathscr{G} of sucrose were dissolved in 19.5ml of distilled water. 4.0ml of 29.1% acryl-

- 262 -

amide solution(Eastman), 4.0ml of 0.9% N, N'methylene bisacrylamide solution(Eastman), and 0.4ml of Ampholine carrier ampholytes, pH 4~6, and of 1.1ml pH 5~7 were added to the mixture. The mixture was stirred and after addition of 0.01 ml of N, N, N', N'-tetramethylethylene diamine (TEMED, Eastman) it was deaerated, and 1ml of 1% ammonium persulfate was added. The solution was filled into the gel mold with a plastic syringe. After complete polymerization which took approximately 60min. at room temperature($20\sim25$ °C), the gels were stored at 4°C overnight and used next morning. Ammonium persulfate was made freshly, and the acrylamide and the bisacrylamide solutions were made freshly every two weeks.

Isoelectric focusing was made as following; one strip of filter paper(10×240 nm Whatman No.17 Chromatography paper) soaked in 1N phosphoric acid was placed at the anodal electrode and four strips of filter paper soaked in 1N NaOH were used as cathodal electrode. The power supply was set at 1,000V and 59mA, prerun was performed for 90min. After the prerun, filter papers($6 \times$ 10π s Schleider and Schull grade 270 paper)coaked in the serum samples were put on the middle of the gel, or at 3cm apart from the cathodal electrode filter paper, and the run was continued for 30min. The filter papers were removed and the main run was continued for 60min. at 1,000V, then the voltage was increased to 1,200 and the focusing was continued for 120min.

After the focusing, the gels were stained for 30min. with Coomassie brilliant blue solution prepared with 400mt of distilled water in which 72g of trichloracetic acid and 22g of sulfosalicylic acid and 100mt of methyl alcohol containing 0.6g of Coomassie brilliant blue(Sigma) were dissolved. During the stain the solution was kept at 60°C~65°C. Then the gels were destained in the solution containing of 750mt of ethyl alcohol, 240mt of glacial acetic acid, and 1950mt of distilled water. The destaining solution was changed for several times. Serum samples were collected from 364 unrelated healthy individuals in Jeju-do, and were kept in -20 C.

Results and Discussion

After PAGIF pH range $3.5 \sim 9.5$, three common subtypes of Tf C (Tf C1, Tf C1-C2, Tf C2)

Fig. 2. Transferrin patterns obtained by the isoelectric focusing.

			Number			Allele Freq	Frequencies		
Countries or populations	total	ci Ci	C1 C2	C2	Variants	C1 C2	Variants	Author	Year
Korea	120	119			CD1;1			Shim	1964
٨	487	478	~		CBKoreal CBKorea2			Kirk et al	1978
*	364	188	148	28		C1;0.7198 C2;0.2802		Oh	1980
Chinese	116	109	•		CDChinese;7		DChi;0.030	Parker et al	1961
Japanese	46	45	10		B3D;1			*	*
*	240							Kirk et al	1978
*	4, 020	3, 936	(D		CDChi;47 CDHir 1;2 CDHir 2;2 CDHir 3;3 CDHir 3;3 CDNGS 1;1 CB 3;9 CBHir 2;19 CBHir 2;19			Ferrell et al	1977
Congo(Pygmies)	99 113	93 100			CD1;6 CD1=13	C = 0.939 C = 0.925	CD1 = 0.061 CD1 = 0.075	Giblett et al	1966 *
Liberia Nigeria	333	308	~		CD1;25	C; 0 . 925	CD1; 0.069	*	*
Fulani *	111 67	20			CD1;7 CD1;10	C; 0.937 C; 0.838	CD1; 0.063 CD1; 0.147	* *	* *
Habe I bo	120 70	10	0.0		CD1;18 CD1;9	C; 0.850 C; 0.872	CD1; 0.150 CD1; 0.128	* *	* *
Gambia Uganda(Baganda)	157 165	15 16	m 0		CD1;4 CD1;5	C; 0.975 C; 0.970	CD1; 0.025 CD1; 0.030	* *	* *
(Misc. Bantu) Tanganyika(Bondi)	88 80	26 55	00		CD1;5	C; 1.0 C; 0.917	CD1; 0.083	*	*
Kenya(Masai) South Africa, Zulu	50 116	11.5	0,6		CD1;3	C; 1.0 C; 0.974	CD1; 0.026	*	*
 , Hottentot , Bushmen 	59 113	ш , О,	55 99		CD1;4 CD1;14	C; 0.933 C; 0.876	CD1; 0.067 CD1; 0.124	* *	* *
, Colored	88	ũ	86		CD1;2	C; 0.977	CD1; 0.023	*	٨
North Afrfca									
Negro	952	87.4	¥2		01170			•	

-

.

- 264 -

tal 1964	al 1978				al 1977		al 1979			1978		1979	et al 1979			et al 1979	al 1973	*	*	*	*	: et al 1974	*	t al 1961	*	*	*
Blumberg et al	Kuehnl et a				Kuehnl et		Kuehnl et al			Thymann		Hoste	Kueppers et al			Kueppers	Tanis et al	٠	٩	*	*	Geerdink et al	*	Parker et al	*	*	*
Ĩ	B2;0.0064	9	D1;0.0005		Hpa3;0.0029 Kuehnl et al		B2;0.008					C2;0.208	C2;0.188 B2;0.007	D2;0.003		C1;0.843 C2;0.111 D1;0.045 Kueppers et al										D1;0.056	D1;0.132
	1t1 0.8195 0.1720				Tf1;0.1689	Tf2;0.8282	C1:0.795	C2:0.155	C3;0,042	Tf1;0.18516	Tf2;0.8144	C1;0.792 C2;	C1;0.802 C2;			C1;0.843 C2;										C;0.944	C;0.868
CDChi, CDI	CB1-2, CBAtlanti C1B2;10	C1B1-2;3	C2B2;1	B2D1;1	3-1;1) 3-2;2	2 C1B2;4					0	7 C1B2;1	C2D2;1	C2B2;1	1 CID1;15									CD1;9	D1D1;1	CD1;10
	27			(2)	356	(C3-2)		_		06		12															
645	269			(2-1)	135	(C3-1) (C3)		(C2)	9	35		81	40			35											
	631			(1-1)	17	(C1)	158	(C2-1)	64	7		160	66			115		982	186	146	188	279	413	67	89		28
649	942				515		252			132		253	149			166		982	186	146	188	279	413	67	66		38
Greece	Germany				*		★(Hessen)			Danish		Belgium	U.S. White			U.S. Black	South American Indians	Yanomama	Makiritare	Piaroa	Makushi	Wajana(Surinam)	Trio (🔹)	Canada Eskimo	N 'Y. Negro		Sapelo Negro

Transferrin Polymorhismp in Korean 5

.....

.

— 265 —

6 논 문 집

could be distinguished (Kuehnl and Spielmann 1978). The more anodal set was called Tf C2, when both sets (two bands) were present, the phenotype was called Tf C1—C2. In this study the same patterns were appeared. The transferrin patterns obtained by isoelectric focusing are shown in Fig. 2.

The allele freuqencces Tf C1=0.7198, Tf C2= 0.2802 (Table 3). As in Table 3 Hardy-Weinberg equilibrium was quite fit. Comparing with other populations (Table 2), the allele frequency of Tf C1 was the lowest(0.7198) among them(Germany; 0.7995~0.8195, Belgium; 0.792, U. S. White; 0.802, U.S. Black; 0.843), while the allele frequency of Tf C2 was the highest (0.2802) (Germany; 0.155~0.1720, Belgium; 0.208. U.S. White; 0.188, U.S. Black; 0.111). I was regreted that I couldn't compare this result with other Asian populations because of the shortage of references.

 Table 3. Allele frequencies of transferrin of Jeju-do population.

	Total	C1	C1C2	C2
Percent	100.00	51.65	40.66	7.69
Obs.	364	188	148	28
Exp.	364	188.59	146.83	28.58
$X^2 = 0.0$	2294	0.95 <p< td=""><td><0.99</td><td></td></p<>	<0.99	
Gene fr	equencies:	C1=0.719	8	
		C2 = 0.280	2	

Heterogeneous rate; 0.4066

Acording to the study of Kuehnl and Spielmann (1979), they could detect seven phenotypes; Tf C1, C2-1, C2, C3-1, C3-2, C3 and C1B2, by prolonged isoelectric focusing and increased voltage (4.5 hr, 1.800V).

In this study the focusing was prologed for 5hr. but maximum voltage was 1,200 (for last 2hr). I couldn't detect any other variants besides 3 common phenotypes; Tf C1, C1-C2, and C2. The highest frequencies of the C2 gene were found in Japanese (0.26) and Chinese (0.20), and the lowest in Africans(0.05) (Beckman et al 1980). In the frequency of the Tf C2 gene, Japanese population (0.26) and Jeju-do population (0.28) are quite near. The author found the similar result in the study on Gc (Group-Specific Component), too. It would be possible to explain that Jeju-do population and Japanese population are similar to each other.

Shin(1964) reported an example of D1 variant in Korean population from the analysis of 120 serum samples by means of starch gel electrophoresis. But I couldn't detect any other variants, besides common Tf phenotypes from 364 serum samples of individuals in Jeju-do population. Further studies are needed to detect variants from this population.

Literatures Cited

- Beckman, G., Beckman, L. and Sikstreom, C. (1980); Transferrin C subtypes and Spontaneous Abortion. Hum. Hered. 30; 316~ 319.
- Blumberg, B.S., Murray, R. F. Jr., Allison, A.C., Barnicot, N.A., Hirschfeld, J. and Krimbas, C. (1964); Serum Protein Polymorphisms in Greek Populations. Ann. Hum. Genet., London. 28; 189~194.
- Ferrell, R.E., Ueda, N., Satoh, C., Tanis, R. J., Neel, J. V., Hamilton, H.B., Inamizu, T. and Baba, K, (1977): The frequency in Japanese of Genetic variants of 22 proteins [. Albumin, Ceruloplasmin, haptoglobin, and Transferrin Ann. Hum. Genet., London 40; 407~418.
- Geerdink, R. A., Bartstra, H. A. and Schillhorn, J. M. Van Veen(1974): Serum proteins and Red cell Enzymes in Trio and Wajana Indians from Surinam. Am. J. Hum. Genet. 26;

581~587.

- Giblett, E.R., Motulsky, A.G. and Fraser, G.R, (1966): Population Genetic Studies in the Congo. N. Haptoglobin and Transferrin Serum Groups in the Congo and in other African populations Am. J. Hum. Genet. 18 (No. 6);553~558
- Giblett. E. R., Hickman, C. G., and Smithies, O. (1959). Serum transferrins. Nature 183: 1589
- Horsfall, W.R., Smithies, O. (1958). Genetic Control of some human serum beta-globulins. Science, 128;35
- Hoste, Bernadette (1979): Group-Speeific Component (Gc) and Transferrin(Tf) Subtypes Ascertained by Isolectric Focusing Hum. Genet. 50;75~79
- Kirk. R. L., Matsumoto, H. and Katayama, K. (1978): Transferrin Variants in Korea and Japan Jap. J. Hum. Gent. 23;1-7
- Kuehnl, P., Spielman, W. (1977): Hinweise auf einen weiteren Polymorphismus im HP-System: 7th Inter. Congr. Soc. Forensic Hamatogenetica, Hamburg.
- Kuehnl, P., Spielman, W. (1978): Transferrin: Evidence for Two Common Subtypes of the TfC Allele. Hum. Genet. 43;91~95
- Kuehnl, P., Spielman, W. (1979): A Third Common Allele in the Transferrin System, Tf C3, Detected by Isoelectric Focusing Hum. Genet. 50:103~198.
- Kueppers, F., Harpel, B.M.: Transferrin C Su-

btypes in US Blacks and Whites (not published).

- Parker, W.C., Bearn. A.G. (1961): Haptoglobin and Transferrin Variation in humans and primates: two new transferrins in Chinese and Japanese populations Ann. Hum. Genet. (London). 25;227~241.
- Putnam, F. W. (1975): The plasma proteins. Vol. 1. pp. 265~316. Academic press.
- Shim, B. S. (1964): Occurrence of Transferrin D1 in Korea. Nature 203:432
- Smithies, O. (1957): Varitions in human serum beta-globulins. Nature 180;1482~1483
- Smithies, O. (1958): Third allele at the serum beta globulin locus in humans. Nature 181: 1204.
- Sutton, H.E., Jamieson, G. (1972). The glycoproteins, their composition, structure and function (A Gottshalk ed.) BBA Library Vol. 5 Part A. pp. 653. Elsevier, Amsterdam.
- Tanis, R. J., Neel, J. V., Dovey, H. and Morrow M. (173): The Genetic Structure of a Tribal population, the Yanomama Indians.
 K. Gene frequencies for 18 serum protein and erythrocyte enzyme Systems in the Yanomama and five neighboring tribes: nine new variants Am. J. Hum. Genet. 25: 655~676
- Thymann, M. (1978): Identification of a new serum protein polymorphism as transferrin. Hum. Genet. 43;225-229

8 논 문 집

〈國文抄錄〉

韓國人에서의 Transferrin(Tf) Polymorphism에 관한 研究

濟州島人 集團에서 Polyacrylamide gel isoelectric focusing 方法을 利用하여 Serum中의 Transferrin polymorphism에 관한 研究에서 다음과 같은 結果를 얻었다.

- 1. 濟州島人 集團에서의 (n=364) Transferrin subtype은 TfC1, C2-1, C2의 3가지이었다.
- 2. 各 Subtype의 分布는 TfC1; 188명(51.65%), C2-1;148명(40.66%), C2;28명(7.69%)의 순서를 나타내 었다.
- 3. Allele flequency는 TfC1=0.7198, TfC2=0.2802로서 他集團에 비해서 TfC1은 낮은 反面 TfC2는 높 았다.
- 4. Heterogeneous rate는 0.4066이었다.