Effect of Electric Field on the Optically Detected
Quantum Magnetophonon Resonances in
Semiconductors in a Quantized Magnetic Field

Sang Chil Lee and Jeong Woo Kang ™

Abstract

The frequency-dependent magnetoconductivity is applied to bulk polar semiconductors and
the optically detected quantum magnetophonon resonance (OQDMPR) conditions are
obtained. The qualitative features of the ODQMPR effects are investigated as a function of
the strength of magnetic field and the strength of the electric field. In particular, anomalous
behaviors of the ODQMPR lineshape such as the changes in the ODQMPR amplitude, the
appearance of the antiresonances in the ODQMPR lineshape under the quantum
magnetophonon resonance(QMPR) condition, the disappearance of the antiresonances under
the dc electric field, and the splitting and the shift of the ODQMPR peaks are discussed in
detail.

Keywords: Magnetoconductivity, Quantum magnetophonon resonance, Optically detected
quantum magnetophonon resonance, Antiresonance

I . Introduction

The quantum magnetophonon resonance (QMPR) effect predicted by Gurevich and Firsov
(1] in bulk and low-dimensional semiconductor systems [2-10] has been studied in
considerable detail from both the experimental and theoretical points of views because the
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QMPR effect is powerful spectroscopic tools to investigate various transport properties of
semiconductors. Under a magnetic field, the QMPR effect arises from resonant scattering of
the electrons in Landau levels by longitudinal optical (LO) phonons whenever the phonon
" energy is equal to an integral multiple of energy difference between two of Landau levels.
The QMPR provides useful information on band structure parameters, such as the carrier
relaxation mechanism, damping of the oscillations due to the electron-phonon interaction, the
phonon frequencies, the effective mass, and the energy levels. Thus, many studies of the
QMPR effect has been reported [4-10]. Especially, since their properties are very sensitive
to the type of scattering mechanisms, the shape of the line, the linewidth and the shift of
the QMPR peaks, the dependence of temperature and magnetic field strength were the
object of study. However, the QMPR can also be observed directly through a linewidth and
effective mass of the electron cyclotron resonance (CR), as was demonstrated in
three-dimensional (3D) semiconductor systems of GaAs by Hai and Peeters [11] and in
two-dimensional (2D) semiconductor systems of GaAs/Al,Ga ,_.,As heterojunctions by

Bamnes et al. [12]. The optically detected QMPR(ODQMPR) allows one to make quantitative
measurements of the scattering strength for specific Landau levels and vyields direct
information on the nature of the electron-phonon interaction in semiconductors.

In this paper, we apply the frequency-dependent magnetoconductivity, which is obtained
by using the Mori-type projection operator technique [13], to bulk polar semiconductor,
n-InSb, and investigate the features of the optically detected magnetophonon resonances as
a function of the incident photon frequency, the strength of magnetic field, and the strength
of the electric field in such a material. In particular, the appearance of the antiresonances in
the electric-field-induced ODQMPR line shape near CR main peaks under the condition
MPR, the disappearance of the antiresonances under the Dc electric field, and the splitting
and the shift of the electric-field-induced ODMPR peaks are obtained.

The rest of the paper is organized as follows: In Sec. II, we present our theoretical
formulations of the problem. Numerical results for the magnetoconductivity of n-InSb are
presented in Sec. III. In particular, the electric-field-induced ODQMPR conditions for the
model system is given, and the effect of the incident photon frequency, the temperature, and
the strength of magnetic field on the electric-field-induced ODQMPR are discussed. Here,
special attention is given to the anomalous behavior of the electric-field-induced ODQMPR
line shape, such as the appearance of the antiresonances in the electric-field-induced
ODQMPR line shape near CR main peaks and the height and width of the
electric-field-induced ODMPR peaks. Our results are summarized in the last section.
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II. THEORETICAL FRAMEWORK

A system of many noninteracting electrons N, in interaction with phonons is considered
initially in equilibrium with a temperature 7. Then, in the presence of a uniform electric
fild F = (F,0,0) and a constant magnetic fild B = (0,0,B) , the
time-independent Hamiltonian H of the system can be expressed as

H = ¥z<7\|(he+v)l)\')a‘;aA-+H,, 1)

h, 1 - (p+eA)’+ eFx, 2
2m

v = 2[C b exp(—ig- N+ C b explig- 1], (3)
q

Hy = Sho (b5 ,+7), @

where |A> means the Landau state |N, &> in the conduction band, and
M=0,1,2,--) is the Landau-level index, a,'(a,) is the creation (annihilation) operator
for an electron with effective mass m* and momentum p, A is the vector potential,

b+q( b q) is the creation (annihilation) operator for a phonon with momentum # ¢ and

energy ho C ‘ is the interaction operator, and 7 is the position vector of an electron.

q’
By taking into account the Landau guage of vector potential A = (0, Bx,0) the
one-electron normalized eigenfuncitons ( { 7| N, &, k,)) and eigenvalues ( E,) in the

conduction band are obtained by

1 . 3
CrINEkL R = & {x—xg)exp (k. y+ ik 2), (5)
’ VLI, ¥ S
h 2k, 1.
E)‘ = EN(k_\"kZ) = (N+%)hwc+ zmt —h de)__z—m ng, (6)
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wherexy = — B(k,+eF/ko) with Iy = Vh/m'0,,$ k, and k, are the
wave vector component of the electron in the x and 2z direction, respectively,
o (=eB/m") is the cyclotron frequency in the conduction band, V is the drift velocity
of the electron, ®(x) in Eq. (5) is the eigenfunction of the simple harmonic oscillator, and
L, and L, are, respectively, the y- and z-directional normalization lengths.

When a linearly polarized electromagnetic wave of amplitude E and frequency wgiven by

E, = Ecosot, E,. =0, E, = 0 (7

is applied along the z axis, the absorption power delivered to the system is given for the
Faraday configuration ( £ L B ) as [13,14]

2
P = % 5. (0), ®)

where 0 ,(0) = (0 (0)+0 (—©))/2 and 0 ,.(0) (or 0 (—@)) is the
frequency-dependent magnetoconductivity corresponding to the right- (or left-) circularly
polarized wave, and can be expressed as {13,14]

IZ AE\)—KE))
E,—

0@ = T T IKALND E S ©

where the field-dependent spectral density S ,-, is given by

Al (@)
[Ro—E\+E,— 1V (0)PP+ hT% (o)

Sy = (10)

for any localized quantum states A" and A. Here V represents the volume of the system,
J. is the x component of the single-electron current operator, A E,) is a Fermi-Dirac
distribution function associated with the eigenstate |A)> of Eq. (5) and the eigenvalue E,
of Eq. (6). Also V (@) and T ,,(w) are, respectively, the field-dependent line shift
and the field-dependent relaxation rate in the spectral line shape due to collisions

associated with the transition arising from the resonant absorption or emission of a single
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photon of frequency ® and of a single phonon of frequency ® o between states IA> and
IN>. The field-dependent line shift Vv ,.\(») provides the resonance shifting and the
field-dependent relaxation rate I ,-\(®) gives directly the average value of the relaxation

time T (~I ,,\(w)/h), whereas the inverse of which measures the broadening of the
absorption resonance spectrum. It should be noted that both of these quantities depend on
the temperature, the magnetic field, impurity concentration, and the incident photon
frequency.

To obtain the frequency-dependent magnetoconductivity 0 .(®) of Eq. (9) for the
present model system given in Egs. (5) and (6), we need the matrix elements of the x

~component single-electron current operator |{ Nk k_|j IN"k, 'k, >|? given by

T e?ho e'ho,
|<Nk’.kz|]x|N ky kz >|2 = 2m [(N+ 1)8 N+ 1IN’ + N§& N-1IN’ ]5 kok ¥ ko k, (11)
where j, = —ep,/m” and the Kronecker symbols (& -, 5 k. kO 4 4) denote

the selection rules, which arise from the integration of the matrix elements with respect to

each direction. We also replace summations with respect to k,and k,in 2 Nk, k, DY

the following relation [7):

6 Ly — eF/ R a, L,
S = T b, [ k(. a2

-m e L. /2% —eFfhw,

In addition, we assume that the f's in Eq. (9) can be replaced by the Boltzmann
distribution function for nondegenerate semiconductor [7], Le.,

f[EN(ky,kz)] = exp{B[lJ—EN(ky,kz)]}, where [3 = l/kBT with kB belng
Boltzmann constant and 7 temperature, and U denotes the chemical potential given by

(2r3niL2B% R V2 m") Uzexp(Bm V4/2)sinh (Bh o, /2)
sinh (Bm*o VL /2)

n, = N,V denotes the electron density. Then, the frequency-dependent

n=(1/B)In

Here

magnetoconductivity 0 .(®) corresponding to the right-circularly polarized wave is

obtained as follows
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00 _ EDAN(CD)SN(&), (13)

i

where the amplitude factor is

—olnsLlne
Apo) = V—_u%?(N+l)sinh(%I3ﬁmc)(l~e—“m‘)e B(MZ)H “(14)

2m

and the averaged Lorentzian spectrum function is defined as

BrE
1 " ome AT wot e kN i, 2 (©)
Sylo) = = 4 k..
we) T fl“ Bze (ho—H wc)2+ h zrzz(vw+l.k,.,k,:N.k,.,k‘) dk; (15

Sy has a form of the Boltzmann average of the spectral density for a shift of zero,
v = 0, in the spectral line shape. Here 0, = e’n,t/m" with T being static
relaxation time in the absence of a photon. We could see that the frequency-dependent
magnetoconductivity in Eq. (13) exhibits a Lorentzian line shape.

An analytical expression of the relaxation rates in Eq. (15) in the lowest-order
approximation for the weak electron-phonon interaction can be evaluated from the general
expression of the field-dependent relaxation rates given by Eq. (46) of Ref. 13. With the
help of Eq. (6), the field-dependent relaxation rate associated with the electronic transition
between the states |N+1, k,,%k,> and |N, k,, k> is expressed by

- + -
FN+1.k,,k,;N,k,,k,(‘“) = PN+1,/e,._k,;N,k,,k,(“’) + FN+1,k,,k,;N,Iz),le,(a’)- (16a)

+
r N+1 k kiNk, k,(m)

= nzq: NZ;HJ C(q)|2|]N+l.N'(qJ.)|Z

heK  hik,—a)’
2m’ 2m’

X{(1+nq)6[ﬁa)+(n—n')ﬁa)c+ —hq,V,— ho 7,](16b)

, R Rk, +q)t
+n 8lhot+(n—n')ho + 2 — ( z‘qz) + hqVy+ ho 2,
a 2m 2m . e
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F—N+1.k,.k,;N_k).k,(w)

- KZ« ANIC(G)PUN,N'(QL)IZ{(I-*_na)

2 2 2
xs[hm+(n'-n—1)ha)c— h Ifzz+ L (k‘—tq‘) —hq,V;+ hm—‘] (16¢)
2m 2m )
, hiE | Rk,—q,)?
+n¢5[hm+(n —n—1Dho — o’ + 2" +hq,.Vd—ﬁm—5 ,

where N’ indicates the intermediate localized Landau level indices,
n, = [exp(Bho S 1l ~! is the phonon distribution function, C ¢ is the Fourier
transform of the electron-ohonon interaction potential, and

N
I]N,N(uJ.)Iz = N:‘ exD[—u_‘_]uiN[LANN((uJ_)]Z, a7

where «, = Bq¢%/2 with 4% = qi-}-qi.. Here, N, = min{N, N},
N, = max{N,N}, and L%VN((uL) is an associated Laguerre polynomial [16] with
AN = N,—N,.

To calculate the field-dependent relaxation rates I' of Eq. (16) for electron-phonon

interactions, we consider the Fourier component of the interaction potentials[7] for polar
LO-phonon scattering given by |C(g)|? = D'/(R¢%) with D’ being the constant of the
polar interaction, where the assumption that the phonons are dispersionless (ie.,
how— = hw o = constant, where ® ;, is the longitudinal optical phonon frequency)
was made. As shown in Eq. (16), the relaxation rates I' involves integrations with respect to
dx, 4q,, and ¢, in Cartesian coordinates. The integral over ¢, qy, and gq, is very
difficult to evaluate analytically since it must be done separately for each N and N. So, to
simplify the calculations, we replace A q,V, in the argument of the &function by the
potential energy difference eFA; across the spatial extent A_y of a Landau state as some
authors did [17,18]. Then, the field-dependent relaxation rates associated with the electronic
transition between the states |N+1, k., k,> and |N, k,, k,> can be expressed as
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P (N+1,k, kN ky k)

=._ll _L Z(n +1)
a | 2nT e e (18)

( K:(N,N;£)0(0,(£)) . Ki(N,N;k)0(0,(k,) )

VO,(k) VOy(k,)
N (KZ(N,N,kZ)e(G)Z(kZ)) N K;(N,N;kz)e((aﬁ(kz)))
" f®2(k;) V@‘i(kz) ’

where O(x)is the Heaviside step function defined by ©(x) = 1 for x>0 and 0 for

x <0,
2

7 e
.z—e hm,a)Lo_tho, (lga)

Ok) = ho+(N—N)ho,+—

2m
2
O,(k) = Ao+(N—N)ho + ;m,fzz +eFY Em'o o+ Ho 1, (19b)
A 2
®4(kz) = ﬁ(ﬂ+(N_N_1)hmc+ 2m,2+e hm'wLO—tho, (19d)
and
1
KHNN:k)= / P /S (T ., (200)
. u, +E[k, = 2m 6,(k)/7 ) /2
1
K (NN, = f du, | T (s e
SR L 2k, £ 2 Gk )R ) /2
1 [ 1
IQI(NN;IC )= -2-f du [Ty pe (u ; 2. (20
= 0 u, +E&[k, £ \2m 6,(k,)/R ) /2
1
KE(NNk,)= f du | Ty (u, ) . (20d)

u, +I[k, + \om 6,(k,)/7 ) /2

In order to obtain Eq. (18), we transformed the sum over ¢ in Eq. (16) into an integral

. . R N e
form in the usual way as 2,, (V/(2n) )f_mfoo |, 39:34,dg; and used the
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following property of the Dirac delta function: 8[ Ax)] = 28[x—x,J/IF (x)| with x,

being the roots of A(x), and the approximaton (1718] eFAy ~ eFV K /m'w Lo It is
clearly seen from Eq. (16) that the relaxation rates diverge whenever the conditions 0,(k,) =0
and @%, = 0 in K;(N,N;#) are satisfied From these conditions, the frequency-dependent
magnetoconductivities 0 (@) for polar LO-phonon scattering show the resonant behaviors at
Photho = ho ot efN hfm'o,, (P=N-N=1,2,3,..). When the
electric-field-induced ODQMPR conditions are satisfied in the course of scattering events, the
electrons in the Landau levels specified by the level index ( N) can make transitions to one
of the Landau levels ( N') by absorbing and/or emitting a photon of energy ko during
the absorption of a LO phonon of energy h o ;,. Equation (13), together with Eq. (15), is

the basic equation for the electric-field-induced ODMPR spectral line shape, which enables
us to analyze the electric-field-induced ODQMPR effects in semiconductors under magnetic
fields.

. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present the numerical results of the frequency -dependent
magnetoconductivity formula 0 (@) in Eq. (8), together with Eq. (16), which is related
to the electric-field~-induced ODQMPR for the bulk materials. Here, special attention is
given to the behavior of the electric-field-induced ODQMPR line shape, such as the
appearance of the electric-field-inducedODQMPR peaks and the shift of the
electric-field-induced ODQMPR peaks. For our numerical results of Egs. (8) and ( 16), the

parameters of n-InSb are taken [19.20] by an effective mass m* = 0.014m, with my
being the electron rest mass, a LO-phonon energy ho o = 24.4 meV, the electron
density n, = 4x10%m "% and the constant of the polar interaction

D = 5.2x10 "¥kg’m’s ~4 In addition, twenty-one Landau levels are included in
the calculation of the frequency-dependent magnetoconductivity.
Figure 1 shows the electric-field strength dependence of the magnetoconductivities

o «{(0) as a function of the magnetic strength for the different photon frequencies of

polar material n-InSb. As shown in Fig. 1, the various peaks are observed for the various
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different strength of magnetic field. It is clearly seen from the figure that main peaks are
observed at the value satisfied by the cyclotron resonance condition (® = ®_.) and/or the optically

E we/wro = 0.5
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©
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0.2 0.4 0.6 0.8 1 1.2 14
Frequency ( w/wiLo )
Fig. 1 Electric-field dependence of the magnetoconductivity
[ o «(©)] as a function of incident photon frequency for

n-InSbat T = 240 K

detected quantum magnetophonon resonance condition given by Pho tho = ho [,
whereas subsidiary peaks are exhibited at the value satisfied the electric-field-induced
ODQMPR condition Pho.t ho = ko o+ eF\ h/m’0 o, . Therefore, it is to be

noted that all peaks can be obtained from the CR and the electric-field-induced ODQMPR
condition. The physical origin of the small dip structure can be understood by considering
the field-dependent relaxation rate [11]. The field-dependent relaxation rate increases
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sharply since the strong coupling of the electron ~phonon-photon interaction takes place
when the condition o = ®, = 0 ,0/N is satisfied, as a result, the field-dependent

magnetoconductivity is clearly reduced. This antiresonance of the field-dependent
magnetoconductivity is associated with the fact that, since the electron is fully scattered
back and forth between the two Landau levels by the absorption of a single photon of

frequency @ = O, = 0;5/N and the emission of a LO phonon of frequency
® 10 = No, an electron is localized at two Landau levels. It is very interesting .that the
antiresonances (double  peak structure) would  appear whenever the strong
electron-phonon-photon coupling takes place at CR main peaks ( © = o, = o Z0/N ).
The appearance of antiresonances in the electric-field-induced ODQMPR line shape seems
to be fundamental in the electric-field-induced ODQMPR effects. As the strength of the
electric field increases, the width of splitting of the electﬁc—ﬁeld—induced ODQMPR peaks
splitted from the MPR peaks increases. The electric~field-induced ODQMPR  peaks
(@ % 0) obtained from the condition (Pho .t ho = ho ot eFV A /m Lo ) are

splitted by two different peaks, respectively, under the electric field, and the width of
splitted peaks increases with increasing strength of electric field.
Figure 2 shows the electric-field strength dependence of the magnetoconductivities

0, (0) as a function of photon frequency for the different magnetic field strengths of
polar material n-InSh. As shown in Fig. 2, the main peaks obtained from the CR condition
(0 = w,) appear at the same photon frequency although the strength of the electric field
increases. A double peak appeared around o/ ;65 = 0.5 for ®ya,, = 0.5
and the small dip observed disappear under the electric field. The splitting of the subsidiary
electric-field-induced ODQMPR peaks obtained from the condition
(Pho.tho = Ro,,t eF\ hi/m®o 1, ) takes place from QMPR peaks and the
width of splitting increases as the strength of the electric field increases. Our results are
for the case where a linearly polarized electromagnetic wave is applied to the system.
Therefore, the electric-field-induced ODQMPR conditions are given by
Pho .t ho = ho,nt eF\ h/m' to and Pho the = ho,, respectively.

In addition, CR peak shifts have been neglected in our result, because we are interested
in anomalous behaviors of the electric-field-induced ODQMPR line shape.
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Fig. 2 Electric-field dependence of the magnetoconductivity
[ 0,(0)] as a function of magnetic field strength for n-InSb at
T = 240K .

V. CONCLUDING REMARKS

In conclusion, we have derived the frequency-dependent magnetoconductivity 0, (0)
for n-InSb materials and obtained the electric-field-induced ODQMPR  conditions by

Pho,x o = ho,pt eF\ H/m*o o as a function of the strength of the applied

magnetic field ( B ) and the incident photon frequency (® ) under an electric field. With
the electric-field-induced ODQMPR conditions, we have investigated the physical
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characteristics of the electric-field-induced ODQMPR effects in n-InSb. In particular, we
have studied the variation of the anomalous behavior of the electric-field-induced ODQMPR
line shape with the splitting and the shift of electric-field-induced ODQMPR peaks, changes
of the electric-field-induced ODQMPR amplitude, the appearance of the double peak
structure near CR peaks, the disappearance of the double peak under the electric field and
the height and width of the electric-field-induced ODQMPR peaks.

Our results show that (1) the antiresonances in the electric-field-induced ODQMPR line

shape near CR main peaks (® = ©, = o ;,/N ) are observed. (2) Under the electric

field, the main peaks obtained from the CR condition( ® = ) appear at the same photon

frequency. A double peak around the small dip observed disappear under the electric field.
The splitting of the subsidiary electric-field-induced ODQMPR peaks obtained from the

condition( Phiw .t o = h oot eFY h/m'o,;, ) takes place from QMPR peaks
and the width of splitting increases as the strength of the electric field increases. (3) The
electric-field-induced @ODQMPR  peaks(® # () obtained from the condition

(Pho,t ho = ho ot eFV hi/m'w , ) are splitted by two different peaks,
respectively, under the electric field, and the width of splitted peaks increases with
increasing  strength of electric field In addition, strong oscillatons of the
magnetoconductivity in bulk materials such as n-InSb are expected in terms of the
optically detected quantum magnetophonon resonance, which indicate that the
electric-field-induced ODQMPR should also be observed experimentally in such butk
semiconductors. Throughout this work, the single-particle picture has been used. Thus,
electron-electron interactions have been ignored. Despite the above shortcomings of the
theory, we expect that our results will help to understand the electric-field-induced
ODQMPR effects in n-InSb.
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