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Abstract

In this paper, we consider the problem of characterizing idempotent matri-
ces over the Boolean algebra. Consequently, we obtain all types of idempotent
Boolean matrices. They are turned out the sums of some rectangle parts and

some line parts of the given matrices.

Keywords: Idempotent matrix, cell, canonical form, dominate, frame, rectangle part,

line part, (3, j)-disjoint, minimized idempotent matrix.

AMS Subject Classifications: 15A21, 15A33

1 Introduction and Preliminaries

There are many papers on the study of characterizations of matrices over several
semirings([1]-(9]). Boolean matrices([3]-[7]) also have been the subject of research by
many authors because of their association with nonnegative real matrices. Beasley
and Pullman (4] studied on the idempotent matrices and their preservers over several
semirings, and they obtained the characterizations of idempotent Boolean matrices

which are the sums of 3 cells. But there are few papers on the characterizations of
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idempotent Boolean matrices. Song and Kang {7} considercd the following questions:
What are forms of idempotent Boolean matrices? So they obtained all types of
idempotent Boolean matrices which are the sums of 4 cells. But they had not
obtained the general types of all idempotent Boolean matrices. In general, the
characterization of idempotents in abstract algebra systems is a vital problem which
is crucial for the understanding the structure of these systems and in many other
applications(see [8]-[9]). Even for matrices over algebraic systems that are not field
this problem is far from being solved yet. The present paper is devoted to the

characterization of idempotents in matrices over the Boolean algebra.

DEFINITION 1.1. The Boolean algebra is the set B = {0, 1} which is equipped with
two binary operations, addition and multiplication. The operations are defined as

usual except that 1 +1 = 1.

Let M, (B) denote the set of all n x n matrices with entries in B. The usual
definitions for adding and multiplying matrices over fields are applied to Boolean
matrices as well.

Throughout this paper, all matrices are n x n Boolean matrices with entries in
B. The zero matrix is denoted by 0, the identity matrix by I and the matrix with
all entries equal to 1 is denoted by J.

DEFINITION 1.2. An n x n Boolean matrix with only one entry equal to 1 is called

h row and ;' column, we denote this cell by

a cell. If the nonzero entry occurs in *
E;; and say that the cell is in row ¢ and it is in column j. For ¢ # j, we say that E;;

is an off-diagonal cell, E;; is a diagonal cell.

DEFINITION 1.3. A lineis a row or a column of a matrix. A set of cells is collinear

if they are all in the same line.

The following two Lemmas are immediate consequences of the rules of matrix

multiplication.
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LEMMA 1.4. For all indices i,j,u, and v, we have E;;E,, = E;, or 0 according as

j=uorj#u.
LEMMA 1.5. Suppose that C and D are two cells with CD # 0.

(a) If C and D are diagonal, then C = D.

(b) If C is a diagonal cell and D 1is not, then CD = D, and C and D are in the
same row. If D is a diagonal cell and C is not, then CD = C, and C and D
are in the same column.

(c) If C and D are off-diagonal cells, then either

(i) CD is an off-diagonal cell distinct from C and D with DC =0 or
(i) D = C7T, and CD and DC are distinct diagonal cells.

2 General types of idempotent (0, 1)-matrices

DEFINITION 2.1. A matrix E is called idempotent if E* = E. Otherwise, E is

called non-idempotent.

The matrices 0, and J are clearly idempotent. It follows from Lemma 1.4 that
all diagonal cells are idempotent, but all off-diagonal cells are non-idempotent.

Let A = [a;;] be any matrix in M,(B). Then it can be written uniquely as
PIPIL
i=1 j=1

which is called the canonical form of A. Since a;; € {0, 1}, the canonical form shows
that the matrix A is a sum of cells.
In this section, we give the general types of idempotent matrices in M, (B). For

this purpose, we shall analyze the structures of the sums of some cells.
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DEFINITION 2.2. We say that a matrix A = [a;;] dominates a matrix B = [b,] if

and only if a;; = 0 implies that b;; = 0, and we write A > B or B < A.

ProrosiTION 2.3. Let A be an idempotent matriz in M, (B). IfE,,... Ex < A
are some cells with k > 2, then the product E,--- E, < A.

Proof. Since A is idempotent, A is k-potent(A* = A). If E;---E; = 0, then
E,---E; < Ais obvious. Assume that E;---E; # 0. By Lemma 1.4, E,--- E; is
a cell which is a summand for the matrix A*. By the addition rules in B, there is
no elements that can cancel a non-zero summand. Thus F,--- E, < A* = A. The

result follows. n

LEMMA 2.4. Let A be a matriz in M,(B). Then
(1) If all cells of A are diagonal, then A is idempotent.

(2) If all cells of A are off-diagonal, then A is non-idempotent.

Proof. (1) is obvious by Lemma 1.4. Now, we will prove (2). Suppose that all
cells of A are off-diagonal, and let O = {F},..., F,,} be the set of all off-diagonal

cellsin A. Thus we have A = )_ F;. Let us show that if A is idempotent, then there

exists an infinite set of cells ir::(19, which is impossible. We proceed by induction.
Since A is idempotent, there exist distinct three cells F}, F; and F} in O such that
FiF; = Fi. By Lemma 1.4, we can write F; = E,;,, F; = E. s, and F, = E,; with
mutually distinct indices a,b and z,. Since F; = E,;, € O and A is idempotent,
there exist two distinct cells E,,, and F,,;, in O such that E,;, = E,,,E.,;, for
some index z; different from a and z,. Assume that for some k > 2, the set of
distinct cells {Ey;,, ..., Eaz, } € O was already constructed. Then we may add a
new element to this set as follows: Since A is idempotent, there exist two distinet cells
Eazyoy) Ezyize € O such that £, = Eoz, . Ez .1z, for some index zy,, different
from a and z,. Let us assume that there exists an index ¢ = 1,. ..,k — 1 such that

I; = Zyx41. Hence we have that

E,s =E,_ ., =E

Tk+1Ti Ti+1Z5

: Ez.+1:c, S A-,
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a contradiction. Thus z; # zx4; for all i = 1,..., k. It follows that E,,;, € O are
distinct cells for 2 = 1,...,k + 1. Hence, O contains an infinite set of distinct cells.

This contradiction concludes the proof that A is non-idempotent. n

DEFINITION 2.5. Let C), Cy, C; and Cy be four distinct cells in M, (B). Then their

sum is called a frame if the four 1's constitute a rectangle such that at least one of
4
them lies on the main diagonal of the matrix )_ C;. In this case we will say that

=1

each cell C;, i =1,2,3,4, is in the frame.

For example, the following two matrices A, and A, are frames, but B is not.

1010 1010 0011
0 00O 1010 0011
Al = y A2 = and B = (21)
1010 0 00O 0000
0 00O 0 00O 0000

In fact, we can easily show that A; and A, are idempotent, but B is not in M4(B).

PROPOSITION 2.6. Let A be idempotent in M, (B). If F' is an off-diagonal cell in
A such that it is not in the same line to any diagonal cell in A, then it make a frame

with one diagonal cell and two off-diagonal cells in A.

Proof. Let D = {E,,--- ,En} and O = {F}, -, F;} be the sets of all distinct

diagonal and off-diagonal cells of A, respectively. Then we have that

m l
A=) E+) F
i=1 j=1
By Lemma 2.4, we have that m > 1. Let us denote E; = E, 4 foralli=1,...,mand
F = FE,.. Since F and E; are not collinear for all ¢, it follows that a;,...,a,,,b, and c
are mutually distinct indices. We will show that there exists an index ¢ € {1,...,m}

such that the four cells

anaqa Ebaqa anca and Ebc
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is a frame. If not, as in the proof of Lemma 2.4 we will construct an infinite set of
cells in O applying the induction process.

Since A is idempotent and F is not in the same line to any cell in D, there exist
two distinct cells Ey,, and F; . in O such that E,. = Ey;, E; . for some index z;
different from b and ¢. If x; = a; for some 7, then ¢ = i leads to a contradiction.
Hence, z; # a; for all i.

Since A is idempotent and Ey,;, € O, we can find two cells Ey;, and E;,;, in OUD
such that Ey,, = Ey;,FEy,., for some index z,. If b = x5, then E, ., and F' = By
are in the same line, a contradiction. Hence, b # x5 so that Ey, € O. If x5 = 13,
then the four cells E;,;,, Fys,, Ez,c and E,. = F are in the frame, a contradiction
so that E,,;, € O. If z; = a; for some i, then ¢ = 7 leads to a contradiction. Thus

T, # a; for all i and z, # 1. Assume that for some k > 2, the set of cells
{Eb:£11 s 7Ebzka Ez1ca Ezz:na e ’E:ckxk_l} € O

is already constructed. Then we may add new elements to this set as follows:
Since A is idempotent, there exist two cells Ey,,, , and E; s in O U D such
that Ey,;, = Fbz,,, Fz,,.z, for some index zi,:. Then we have z4,; # b because
F is not collinear with diagonal cells. Assume that zx4; = zx. Then E;, . =
Eipize Ezpry Brye < A and by considering a, = T;1 we obtain a contradiction

with the assumption. Thus we have
Eozeryr Eopprzn €0.

Suppose that z4,; = z; for some ¢ = 1,...,k — 1. Then E;; = E =

Th+1Ti
E

teiize - Eripze < A, Therefore, the choice a, = z; leads to a contradiction.

Thus 4 # z; and we have constructed the set
{Eb:rl: EE 7Ebrk+1 ) E:rlc; E:rz:l:l) s 1E1k+1xk} € O

Therefore we obtain an infinite set of off-diagonal cells, {Ej,,|i € N} on b row

which is impossible. This contradiction concludes the proof. ]

COROLLARY 2.7. Let A = F + Y E; be a matriz in M,(B), where F is an off-
=1
diagonal cell and E; diagonal cells. Then A is idempotent if and only if F is in the
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same line to at least one cell E; for some 1.

Proof. 1t follows from Proposition 2.6 and Lemma 2.4. ]

m 2

COROLLARY 2.8. Let A = S E;+ > F; be a matriz in M, (B), where E; are
=1 j=1

diagonal cells and F; off-diagonal cells. Then A is idempotent if and only if each

F; is in the same line to some diagonal cell in A and it satisfies just one of the

following conditions:
(1) F1F2 = F2F1 = 0,’
(2) Fy and F, are in a frame with two diagonal cells of A.

Proof. Suppose that A is idempotent. By Lemma 2.4, we have that m > 1. It
follows from Proposition 2.6 that each Fj is in the same line to some diagonal cell
in A. Suppose that FiF, # 0 or FpFy # 0. If 1Fy # 0, then we have 2 = FT,
and F,F, and F,F, are distinct diagonal cells in A by Lemma 1.5-(c). Therefore
the four cells Fy, Fp, 1 F; and F,F, form a frame. For F,F, # 0, we have the same

conclusion as the above. The converse is immediate. u
Let
R,
R,
A =lay] = : =[C, Cz -+ Gy
R,

be an n x n Boolean matrix, where R; and C; are i*® row and 4% column of A,
respectively. If a;; = 1 for some 7 and j, then we say that the cell E;; is in the row
R; and in the column Cj.

DEFINITION 2.9. Let A = [a;;] € Ma(B). For 1 < 4,j < n, the row R; and the
column C; are said to be (i, j)-disjoint if XY =0 for all off-diagonal cells X € R;
and Y € Cj.
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LEMMA 2.10. Let A € M,(B) be idempotent. If R; and C; of A are not (3,7)-
disjoint, then E;; < A.

Proof. Suppose that R; and C; are not (3, j)-disjoint for some i, j. Then there
exist at least two off-diagonal cells X € R; and Y € C; such that XY # 0. Thus
we may write that X = E;; and Y = E; for some indices z and y. Since XY # 0,
it follows from Lemma 1.4 that z = y and XY = E;;. Since A is idempotent, from
Proposition 2.3 it follows that XY < A, i.e., E;; < A. [ |

DEFINITION 2.11. A weight of A € M, (B) is the number of non-zero entries of A
and will be denoted by | A|.

LEMMA 2.12. Let A = [a;;] € M, (B) be idempotent with a; = 1 for some i. If
|Ri|=s+1and |C;] =t+1, then A has ezactly s -t frames containing E;;.

Proof. 1f s = 0 or t = 0, then the proposition is straightforward. Thus we can
assume that s,¢ > 1. Suppose that R = {Fy,--- , Fs} and C = {G,,--- ,G,} are the
sets of all off-diagonal cells in A which are in R; and C;, respectively. Let F, and
G, be arbitrary members in R and C, respectively. Then we have forms F, = E,,
and G; = Ey; for some indices a and b different from i. Since A is idempotent,
G\ F, = E,,E,;, = Ey, is a cell in A. Therefore the four cells

E‘ii7 Fra Gl’ and GIF‘I‘

form a frame. Thus A has at least s -t frames containing E;;. It follows from the

definition of a frame that A has at most s - ¢t frames containing Ej;. n

DEFINITION 2.13. Let A be a matrix in M,,(B). We say that A has i*" rectangle
part if the following holds:

(1) there is a frame in A containing Ej;,

(2) for any k,l e {1,...,n},if E;;, By < A, then E; < A.
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Let t = | Ryl — 1 and s = | C;| — 1 be the numbers of non-zero off-diagonal entries

in i*" row and j** column, respectively. Then the sum

s t
Z Z (Eii + Eiil + Ejki Ejkll) (22)
k=1 I=1

is called the i*" rectangle part of A, and is denoted by RP(i).

DEFINITION 2.14. A matrix A = [a;;] in M, (B) has an i*" line part if a;; = 1 and,
| R;] = 1 or | C;] = 1. In this case R; + C; is a line and is called the i*" line part of
A, and is denoted by L(z).

COROLLARY 2.15. If A is an idempotent matriz in M,(B), then A is a sum of
rectangle parts and line parts of A.

Proof. 1t follows directly from Proposition 2.6 and Lemma 2.12. a
But the following Example shows that the converse of Corollary 2.15 is not true.

EXAMPLE 2.16. Let

O = =
o O O
- O O

1
1
0
0001

be a matrix in M4(B). Then C is the sum of the 1** rectangle part and the 4 line
part of C. Notice that R, and Cj are not (1, 4)-disjoint because Ey3E34(= E14) # 0.
Lemma 2.10 implies that C is not idempotent. ]

ExAMPLE 2.17. Consider a matrix

(1101 0]
11010
D=|000 0 0| eMs®B).
11010
00101
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Then we can easily show that 1%, 2°¢ and 4" rectangle parts of D are identical.

Also Theorem 2.20(below) shows that D is idempotent. |

DEFINITION 2.18. Let A = [a;,] be an idempotent matrix in M,(B). Suppose
that A has i*" and j*® rectangle parts RP(i) and RP(j) of A with 7 # j. It is said
that RP(i) and RP(j) are disjoint if R; and C; are (i, j)-disjoint or R; and C; are
(7, 1)-disjoint.

PROPOSITION 2.19. Let A = [ay;] be an idempotent matriz in M,(B). Then any

two rectangle parts of A are either disjoint or identical.

Proof. Suppose that i*" and j*! rectangle parts of A are not disjoint. By the

definition, we have R; and C; are not (i, j)-disjoint and, R; and C; are not (j,%)-
disjoint. Therefore E,; and Ej; are off-diagonal cells in A by Lemma 2.10. We claim
that F is a cell which is in RP(i) if and only if it is a cell in RP(j). It is easy to
show that the four cells Ey, E;;, E;j and Ej; are in RP(i) N RP(j). Suppose that E
is a cell in RP(i). First, assume that F = Ej, is an off-diagonal cell in R;. Then
we have E,, = E;; E;; < A, and the four cells

Eia; Eij7 EJ and Ejj

form a frame. Therefore, E = Ej, isin RP(j). Similarly, if E = Ej; is an off-diagonal
cell in C;, we obtain that £ = Ey; is in RP(j).

Next, assume that £ = E.4 is an off-diagonal cell which is in neither R; nor C.
Since E is in RP(i), there exist two off-diagonal cells Ej; and Ey; in R; and C;,
respectively such that E.4; = E,;E;,. Therefore we have that ¢ =y and d = z by

Lemma 1.4. Since A is idempotent, we obtain that
Ecj — Ey] = EyiEij S A and E]d - EJ:[: = EjiEiI S A

Hence the four cells
Ecda EC]‘, Ejd and Ejj

form a frame. Thercfore we have that E = E.4 is in RP(j).
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Similarly, if E is a cell in RP(j), then we have that E is in RP(i). Therefore,
the two rectangle parts RP(i) and RP(j) are identical. ]

THEOREM 2.20. Let R

A= iE,— +> F
i=1 j=1

be a non-zero matriz in M,(B), where E; are diagonal cells, and F; off-diagonal
cells. Then A is idempotent if and only if it is a sum of s(> 0) disjoint rectangle
parts and t(> 0) line parts of A, and the following conditions are satisfied;

(1) if each rectangle part has o; distinct diagonal cells for i = 1,--- s, we have
m=a;+---+as+t,

(2) if R; and Cj are not (3, j)-disjoint, we have E;; < A.

Proof. The necessity is immediate. So, we only prove the sufficiency. By Lemma
2.4, we have that m > 1. Let F be an off-diagonal cell in A. By Proposition 2.6, F
is in some rectangle part or some line part of A. Therefore without loss of generality,
we can assume that A has s disjoint rectangle parts and ¢ line parts, where s, > 0.

The rests of Theorem follow from Lemma 2.10 and Proposition 2.19. |

k
COROLLARY 2.21. Let A = E; + 3 F; be a matriz in M,(B), where E;; is a
j=1

J_
diagonal cell and F; off-diagonal cells. Then A is idempotent if and only if one of

the following conditions is satisfied;

(1) A is the i*" line part of A (i.e., all cells in A are collinear),

(2) A is the i** rectangle part of A. Furthermore, if R; and C; have T and y
off-diagonal cells, respectively, then k = zy +z + y.

Proof. This is a special case of Theorem 2.20 with m = 1. The formula k£ =

Ty + z + y is established by Lemma 2.12 because A has only one diagonal cell. =

Thus we have characterizations of all types of idempotent Boolean matrices in
M, (B) as shown in Theorem 2.20.
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3 A minimized idempotent matrices

DEFINITION 3.1. For a matrix X € M,(B), a minimized idempotent matriz of X
is a matrix X such that

(1) X <X,
(2) X is idempotent;
(3) |X| =min{|Y|: X <Y, Y is idempotent}.

In particular, if X is an idempotent matrix, then X = X. Also, a minimized

idempotent matrix of X may not be unique. For example, see the following Example.

EXAMPLE 3.2. Let

0
1
. (3.1)

oo O =
= o O O
o O O

0 0

be a matrix in My(B). Then H = F,|; + Ey, + E43 and Ey3 is not in the same line
to any diagonal cell of H. By Proposition 2.6, the off-diagonal cell Ey; is in a frame

or in a line part of H. Two possibilities exist and they are

1000 1 000
— 0100 — 0100
H = or H= (3.2)
0 010 0000
0010 0011
=

Theorem 2.20 is a key to find a minimized idempotent matrix of the given matrix.
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EXAMPLE 3.3. Let

(100110 0]

1000000

1000000
X=l0000000 (3.3)

0000010

0000010

(0001001

be a matrix in M7(B). Then X is the sum of three diagonal cells Ey;, Egg, E77
and six off-diagonal cells Ey4, E5, Fa1, E31, Ese, E74. And it is easy to show that X
is not idempotent. To obtain a minimized idempotent matrix of X, it must have
more cells. To do this, we use Theorem 2.20. Notice that R; and Cg are not
(1,6)-disjoint. Thus we have Fjg < A. Similarly, E7; < X. Therefore the 1** row
of X has three off-diagonal cells E\4, E5, Evg, and the 1*" column of X has three
off-diagonal cells Es;, E3;, E7;. Thus X has 1*! rectangle part. Consequently, we

obtain a minimized idempotent matrix of X as following;

[l
===
o O O O o o O
o O O O O O o
- O O O = e
-0 o O = =
[ e T e T e B o S
-0 O O O o O

~—~
(9% ]
=
-

Then we have that X is the sum of one rectangle part and two line parts. |
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