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1. Introduction

In this paper, we have proved some theorems which assert that every com-
pact connected Lie group is a symmetric manifold with respect to the bi-
invariant metric. Using the definition of curvature operator, we will derive
some results of Riemannian curvature operator and Riemannian curvature
tensor.

2. Bi-invariant Riemannian metric

Let M be a C* manifold, and let § : R x M — M be a C°° mapping

satisfying the conditions
(1)6(0,p) =p foreverype M

(2)6: 0 0,(p) = b14.4(p) = 65 0 6:(p)
for every s,t € R and for every p € M, where 6,(p) = 6(t,p).

Then 8 is called a C™ action or one parameter group of M. For each one
parameter group 8 : R x M — M there exists a unique C*° vector field X,
which is called the infinitesimal generator of 8, such that

X, = Jim - {F(6adp) - f(p)}
for each f € C*(p).
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Definition 2.1. If6: G x M — M is the action of group G on M. Then a
vector field X on M is said to be invariant under each of the diffeomorphism
8y of M to itself for every g € G. That is, 6(g.,X) = X.

Proposition 2.2. If 6 : Rx M — M is a C*® action of R on M. Then

the infinitesimal generator X is invariant under this action, that is

91.(Xp) = th(p) for allt € R.

Proof. Let f € C*(0,(p)) for some (t,p) € R x M. Then

b1, (Xp)f = Xp(foby)
= lim_ é [f 0 8:(8ae(p) — f 0 6:(p)] .

However, R is Abelian and we have
6t 06ar = bi1a1 = 60, 00,.

So
0 (X,)f = Jim = [(£ 0 Oadl6:(p)) - £(6.(p))
=Xo.(nf-

Let G be a Lie group. For each a € G, let La[Ra] be a left[right] transfor-
mation. That is, for every g € G,

L,:G— G, Lys(g9) = ag, and
R,:G — G, R,(g) = ga.

Ifa C vector field X of G has the property that L, (X;) = Xog(Ra,(X,) =
Xga) for every a, g € G, then X is said to be left(right) invariant.

Weput £ ={X € X(M)|X is a left invariant C* vector field}.
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Then vector space £ is a Lie algebra with product [X,Y]. L is called the
Lie algebra of G. In this case £ = T, (G) where ¢ is the identity of G as Lie
algebra ({5]).

Let G be a Lie group. For each a € G we define I, : G — G by I,(g) =
aga”!. We can easily prove the following : For a,b € G

L7'=L,-, R;'=R,-, L,oR,=R,0lL,
Ia:LGORa~1, Iab:IaOIb.

Therefore we can get the following : For XY € £

(1)Lan(Ra-X) = Ra‘(La.X) = RatX € £

(2)IQ‘X = La‘(Ra—l.X) =R,-1 . X € L

)L (XY = (Lo X, LY € £ | ........................ (%)

(4)R,. and I,, are automorphisms of £

It is bi-invariant if it is both left and right invariant.

Definition 2.3. Let F : R — G be a group homomorphism, where R is
a Lie group with addition and G be a Lie group. Then F(R) = H C G is
called a one parameter subgroup of G.

Proposition 2.4. Let G be a Lie group. Then there is an one-to-one cor-
respondence between L and the set of all one-parameter subgroups of G.
equally, every left invariant vector field of G is complete ([4]).

Let ® be a Riemannian metric on M. Then every Lie group has a left-
invariant Riemannian metric and every Lie group is orientable ([4]).

From the existence of a bi-invariant volume element one is able to deduce
many important properties of Lie group, if define the bilinear form @, deter-
mines a bi-invariant tensor field of order 2 on T.(G). Then we have following
property.

Proposition 2.5. It is possible to defined a bi-invariant Riemannian metric
® on a compact connected Lie group G. ([4])

3. Symmetric Riemannian manifold

Let X(M) be the set of all C* vector fields over a C* manifold M. Then
it is obvious that X(M) is a module of the commutative ring C'>(M).
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Definition 3.1. A C™ connection V on M is a mapping
V:X(M)xXM)— X(M)
defined by V(X,Y) = VxY, which is satisfying conditions:
For all f,g € C®°(M), and X, X" Y,Y' € X(M)
(DVix4ex'Y = fVXY +¢gVxY
@)Vx(fY +9Y") = fVxY +gVxY' + (X )Y + (Xg)Y'
(B)X,Y]=VxY -VyX (Symmetric)
XY, Y')=(VxY,Y') + (Y, VxY'),
where ( , ) is the inner product on M.
A C® connection V is called a Riemannian connection.

Let M be a Riemannian manifold. Then it has been proved that there
exists a unique Riemannian connection V ([4]).

Theorem 3.2. Let F : M; — M, be an isometry between Riemannian
manifolds M, and M,. Then F preserves the Riemannian connection.

Proof. Let V() and V() be Riemannian connections of M; and M,, respec-
tively. For each X', X, Y € X(M). We have

F.X(F.X',F.Y)=X(X"Y),

where (, ) is the inner product on the given Riemannian manifolds. In fact
noting (Fu X', F.Y )p(py) = (X',Y), for each p € M; where F is an isometry,

we have

FX(FX' FY)rp) = Xp(Fu X', Y ) 5oy
= X,(F. X', F.Y)p(p)
= P(X'a Y)p.
By (4) of Definition 3.1,
F(X)FX'FY)= (VO RX' FY)+ (R.X ,VZFY)

= X(X')Y)

= (VX" V) + (X', VvQY)

= (F(VYX"), RY) + (F.X', F. (VYY)



Riemannian Curvature with Bi-invariant on Symmetric Spaces

Hence
(F.(VPx') - VO RX', FY) + (RX, R(VYY)-VE(RY) =0
Since the above identity holds for X, ¥, X' € X(M), we have
R(VQY) = VI Ry

for every X, Y € X(M).

Definition 3.3. Let M be a connected Riemannian manifold. If to each
p € M there exists an isometry o, : M — M which is

(1) o, is involutive (i.e., 0} = 0,), and

(2) there exists an open neighborhood U of p such that op|u has the only

fixed point p, then M is said to be symmetric. Sometimes p is called
isolated fized point of a symmetry o,.

Let M be a symmetric manifold and let o, : M — M be a symmetry
at p. Then for X, € T,(M), 0p.(X,) = —X,, where p. denoting the point
antipodal at p. ([5])

Proposition 3.4. A symmetric Riemannian manifold M is complete. Fur-
thermore, for each p € M the symmetry o, at p maps a geodesic on M
through p onto itself.([5])

Theorem 3.5. Every compact and connected Lie group G is the symmetric
space with respect to the bi-invariant metric. Thus with the bi-invariant
metric G is complete.

Proof. By proposition 2.5, G has the bi-invariant metric. Define ¥ : G — G
by ¥(z) = z7! for each z € G. It follows that ¥ is involute because that ¥
has only one fixed point e(identity of G). Recall that for each X, € T.(G)
there exists a unique one parameter subgroup F': R — G such that X, =

F(0). If z = F(t) then 27! = F(—t) and thus ¥(F(t)) = F(—t). Hence

V.(X) = B(F(0) = 5 (HED)) |

:%Fhﬂho=*ﬂm=_xv
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It follows that for X, Y. € T.(G)

(\Il*eXe, ‘Il*eYe) = ("Xe, _}/e)
= (Xm Y;)’

where (, ) is the bi-invariant inner product on T.(G). That is, ¥,. is an
isometry on T.(G). Note that L, and R,(a € G) are isometries with respect
to the bi-invariant metric of G. Since

V(z)=z"'=(az)Ta = Ryor - V- Lo-a(2)
foreachz € G V., :T,(G) — T,-1(G) may be written as
Voo = (Ro-1,)e Ve - (Lg-1, )a.

Thus ¥,, is an isometry. In consequence, ¥ : G — G is an isometry. For
each g € G define o4 by

0g =1L, -Ry- ¥, that is, o4(z) = gz~ 'g.

Then it follows that o4 is the symmetry at G.

Proposition 3.6. Let G be a compact connected Lie group. Then each
geodesic through the identity e of G is a one parameter subgroup of G.
Furthermore every point of a connected Lie group G is a one parameter
subgroup. Thus this geodesic is an one parameter subgroup and so G is a
one parameter subgroup.([4])

Let M be a Riemannian manifold. For C* vector fields X, Y over M, the
curvature operator R(X,Y) is defined by

R(X,Y)-Z=Vx(VyZ)-Vy(VxZ)-Vxyv|Z

for each C* vector field Z over M, where V is the Riemannian connection
of M.
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Theorem 3.7. Let G be a compact connected Lie group and let L be the

Lie algebra of G. For X,Y,Z € L, Riemannian curvature operator equal to
1

Z[Z’ [X,Y]] with bi-invariant Riemannian metric.

Proof. Let V be the Riemannian connection with bi-invariant metric of G.
Take X € £ then VxX = 0. In fact, X, define a unique one parameter
subgroup F : R — G such that F(0) = e and F(0) = X.. For a C™ vector
field Y over M,

D
VXCY = EYF(”It:O.
Hence
Vx. X = 2X |
XX = 2 XAP()le=o-

F(t) is geodesic by proposition 3.6 and thus

D D (dF
GFO =g (‘d?) =0

This means that Vx, X = 0. Since our metric is left-invariant and X is also
left-invariant, by Theorem 3.2 VxX = 0 everywhere on G. Since if X and
Y are left invariant vector fields then so are X +Y and [X,Y], we have

0=Vx4v(X+Y)=VxY +VyX (VxX =0= VvyY).
If X and Y are left invariant, then
VxY +VyX =0, [X,Y]=VxY—VyX.
By properties (), the connection of a biinvariant metric on G is given by
1
VxY = E[X’ Y].

For X,Y and Z in L, since

1 1 1
Vx(VyZ) = 5lX,VyZ] = 5[X, 51

Y, Z]]
_ i[x, 1Y, Z]]
vX(VXZ) = zll'[y’ [X? Z]]

1
VixyZ = 5[[-’(’ Y], Z]
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we have the following;
R(X.Y)-Z =Vx(VyZ) - Vy(VxZ) - VixyZ
1 1 1
= L1, 2]) - LY. [X, 2] - (X, Y].2]
= X 20 +1%,12, X)) + 121XV} + 2z, x.v)
= (2, x. Y]]

Theorem 3.8. Let G be a symmetric Riemannian manifold and let £ be
the Lie algebra of G. Then for X,Y,Z,W € L Riemannian curvature tensor

RX,Y,Z,W) = -i([x, Y], [2, W)

with bi-invariant Riemannian metric.

Proof. From the result R(X,Y,Z,W) = (R(X,Y)-Z, W), using the property
([X,Y)],2) = (X,[Y, Z]) ([6]) and Theorem 3.7, we have

R(X,Y,Z,W) = —%([[X, Y], 2], W)
= 21X, Y], 12, W)
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