J. of Basic Sciences, Cheju Nat. Univ. 9(2), 1~8, 1996

기초과학연구 제주대학교 9(2), 1~8, 1996

RIEMANNIAN CURVATURE WITH BI-INVARIANT ON SYMMETRIC SPACES

HYUN, JIN-OH

Department of Mathematics Education Cheju National University

1. Introduction

In this paper, we have proved some theorems which assert that every compact connected Lie group is a symmetric manifold with respect to the biinvariant metric. Using the definition of curvature operator, we will derive some results of Riemannian curvature operator and Riemannian curvature tensor.

2. Bi-invariant Riemannian metric

Let M be a C^{∞} manifold, and let $\theta : R \times M \longrightarrow M$ be a C^{∞} mapping satisfying the conditions

$$\begin{aligned} (1)\theta(0,p) &= p \quad \text{for every } p \in M \\ (2)\theta_t \circ \theta_s(p) &= \theta_{t+s}(p) = \theta_s \circ \theta_t(p) \\ \text{for every } s,t \in R \text{ and for every } p \in M, \text{ where } \theta_t(p) = \theta(t,p). \end{aligned}$$

Then θ is called a C^{∞} action or one parameter group of M. For each one parameter group $\theta : R \times M \longrightarrow M$ there exists a unique C^{∞} vector field X, which is called the *infinitesimal generator* of θ , such that

$$X_p f = \lim_{\Delta t \to 0} \frac{1}{\Delta t} \left\{ f(\theta_{\Delta t}(p)) - f(p) \right\}$$

for each $f \in C^{\infty}(p)$.

- 1 -

Definition 2.1. If $\theta : G \times M \longrightarrow M$ is the action of group G on M. Then a vector field X on M is said to be invariant under each of the diffeomorphism θ_g of M to itself for every $g \in G$. That is, $\theta(g_*, X) = X$.

Proposition 2.2. If $\theta : R \times M \longrightarrow M$ is a C^{∞} action of R on M. Then the infinitesimal generator X is invariant under this action, that is

$$\theta_{t_*}(X_p) = X_{\theta_t(p)} \text{ for all } t \in R.$$

Proof. Let $f \in C^{\infty}(\theta_t(p))$ for some $(t, p) \in R \times M$. Then

$$\theta_{t_{\star}}(X_p)f = X_p(f \circ \theta_t)$$

=
$$\lim_{\Delta t \to 0} \frac{1}{\Delta t} \left[f \circ \theta_t(\theta_{\Delta t}(p) - f \circ \theta_t(p)) \right].$$

However, R is Abelian and we have

$$\theta_t \circ \theta_{\Delta t} = \theta_{t+\Delta t} = \theta_{\Delta t} \circ \theta_t.$$

So

$$\theta_{t_{\star}}(X_p)f = \lim_{\Delta t \to 0} \frac{1}{\Delta t} \left[\left(f \circ \theta_{\Delta t}(\theta_t(p)) \right) - f(\theta_t(p)) \right] \\ = X_{\theta_t(p)} f.$$

Let G be a Lie group. For each $a \in G$, let La[Ra] be a left[right] transformation. That is, for every $g \in G$,

$$L_a: G \longrightarrow G, \ L_a(g) = ag, \ ext{and} \ R_a: G \longrightarrow G, \ R_a(g) = ga.$$

If a C^{∞} vector field X of G has the property that $L_{a_{\bullet}}(X_g) = X_{ag}(R_{a_{\bullet}}(X_g) = X_{ga})$ for every $a, g \in G$, then X is said to be left(right) invariant.

We put $\mathcal{L} = \{X \in \mathfrak{X}(M) \mid X \text{ is a left invariant } C^{\infty} \text{ vector field} \}.$

Then vector space \mathcal{L} is a Lie algebra with product [X, Y]. \mathcal{L} is called the *Lie algebra* of G. In this case $\mathcal{L} \cong T_e(G)$ where e is the identity of G as Lie algebra ([5]).

Let G be a Lie group. For each $a \in G$ we define $I_a : G \longrightarrow G$ by $I_a(g) = aga^{-1}$. We can easily prove the following : For $a, b \in G$

$$L_a^{-1} = L_{a^{-1}}, \quad R_a^{-1} = R_{a^{-1}}, \quad L_a \circ R_a = R_a \circ L_a$$
$$I_a = L_a \circ R_{a^{-1}}, \quad I_{ab} = I_a \circ I_b.$$

Therefore we can get the following : For $X, Y \in \mathcal{L}$

It is *bi-invariant* if it is both left and right invariant.

Definition 2.3. Let $F : R \longrightarrow G$ be a group homomorphism, where R is a Lie group with addition and G be a Lie group. Then $F(R) = H \subset G$ is called a one parameter subgroup of G.

Proposition 2.4. Let G be a Lie group. Then there is an one-to-one correspondence between \mathcal{L} and the set of all one-parameter subgroups of G. equally, every left invariant vector field of G is complete ([4]).

Let Φ be a Riemannian metric on M. Then every Lie group has a leftinvariant Riemannian metric and every Lie group is orientable ([4]).

From the existence of a bi-invariant volume element one is able to deduce many important properties of Lie group, if define the bilinear form Φ_e determines a bi-invariant tensor field of order 2 on $T_e(G)$. Then we have following property.

Proposition 2.5. It is possible to defined a bi-invariant Riemannian metric Φ on a compact connected Lie group G. ([4])

3. Symmetric Riemannian manifold

Let $\mathfrak{X}(M)$ be the set of all C^{∞} vector fields over a C^{∞} manifold M. Then it is obvious that $\mathfrak{X}(M)$ is a module of the commutative ring $C^{\infty}(M)$. **Definition 3.1.** A C^{∞} connection ∇ on M is a mapping

 $abla : \mathfrak{X}(M) \times \mathfrak{X}(M) \longrightarrow \mathfrak{X}(M)$

defined by $\nabla(X, Y) = \nabla_X Y$, which is satisfying conditions: For all $f, g \in C^{\infty}(M)$, and $X, X', Y, Y' \in \mathfrak{X}(M)$

$$(1)\nabla_{fX+gX'}Y = f\nabla_X Y + g\nabla_{X'}Y$$

$$(2)\nabla_X(fY+gY') = f\nabla_X Y + g\nabla_X Y' + (Xf)Y + (Xg)Y'$$

$$(3)[X,Y] = \nabla_X Y - \nabla_Y X \qquad (Symmetric)$$

$$(4)X(Y,Y') = (\nabla_X Y,Y') + (Y,\nabla_X Y'),$$

where (,) is the inner product on M. A C^{∞} connection ∇ is called a Riemannian connection.

Let M be a Riemannian manifold. Then it has been proved that there exists a unique Riemannian connection ∇ ([4]).

Theorem 3.2. Let $F : M_1 \longrightarrow M_2$ be an isometry between Riemannian manifolds M_1 and M_2 . Then F preserves the Riemannian connection.

Proof. Let $\nabla^{(1)}$ and $\nabla^{(2)}$ be Riemannian connections of M_1 and M_2 , respectively. For each $X', X, Y \in \mathfrak{X}(M)$. We have

$$F_*X(F_*X',F_*Y) = X(X',Y),$$

where (,) is the inner product on the given Riemannian manifolds. In fact noting $(F_*X', F_*Y)_{F(p)} = (X', Y)_p$ for each $p \in M_1$ where F is an isometry, we have

$$F_*X(F_*X', F_*Y)_{F(p)} = X_p(F_*X', F_*Y)_{F(p)}$$

= $X_p(F_*X', F_*Y)_{F(p)}$
= $X_p(X', Y)_p$.

By (4) of Definition 3.1,

$$\begin{split} F_*(X)(F_*X',F_*Y) &= (\nabla_{F_*X}^{(2)}F_*X',F_*Y) + (F_*X',\nabla_{F_*X}^{(2)}F_*Y) \\ &= X(X',Y) \\ &= (\nabla_X^{(1)}X',Y) + (X',\nabla_X^{(1)}Y) \\ &= (F_*(\nabla_X^{(1)}X'),F_*Y) + (F_*X',F_*(\nabla_X^{(1)}Y)). \end{split}$$

- 4 -

Hence

$$\left(F_{*}(\nabla_{X}^{(1)}X') - \nabla_{F_{*}X}^{(2)}F_{*}X', F_{*}Y\right) + \left(F_{*}X', F_{*}(\nabla_{X}^{(1)}Y) - \nabla_{F_{*}X}^{(2)}F_{*}Y\right) = 0.$$

Since the above identity holds for $X, Y, X' \in \mathfrak{X}(M)$, we have

$$F_*(\nabla_X^{(1)}Y) = \nabla_{F_*X}^{(2)}F_*Y$$

for every $X, Y \in \mathfrak{X}(M)$.

Definition 3.3. Let M be a connected Riemannian manifold. If to each $p \in M$ there exists an isometry $\sigma_p : M \longrightarrow M$ which is

(1) σ_p is involutive (i.e., $\sigma_p^2 = \sigma_p$), and

(2) there exists an open neighborhood U of p such that $\sigma_p|_U$ has the only fixed point p, then M is said to be symmetric. Sometimes p is called isolated fixed point of a symmetry σ_p .

Let M be a symmetric manifold and let $\sigma_p : M \longrightarrow M$ be a symmetry at p. Then for $X_p \in T_p(M)$, $\sigma_{p_*}(X_p) = -X_p$, where p_* denoting the point antipodal at p. ([5])

Proposition 3.4. A symmetric Riemannian manifold M is complete. Furthermore, for each $p \in M$ the symmetry σ_p at p maps a geodesic on M through p onto itself.([5])

Theorem 3.5. Every compact and connected Lie group G is the symmetric space with respect to the bi-invariant metric. Thus with the bi-invariant metric G is complete.

Proof. By proposition 2.5, G has the bi-invariant metric. Define $\Psi: G \longrightarrow G$ by $\Psi(x) = x^{-1}$ for each $x \in G$. It follows that Ψ is involute because that Ψ has only one fixed point e(identity of G). Recall that for each $X_e \in T_e(G)$ there exists a unique one parameter subgroup $F: R \longrightarrow G$ such that $X_e = \dot{F}(0)$. If x = F(t) then $x^{-1} = F(-t)$ and thus $\Psi(F(t)) = F(-t)$. Hence

$$\Psi_*(X_e) = \Psi_*(\dot{F}(0)) = \frac{d}{dt} \left(\Psi(F(t)) \right)|_{t=0}$$
$$= \frac{d}{dt} F(-t)|_{t=0} = -\dot{F}(0) = -X_e.$$

- 5

It follows that for X_e , $Y_e \in T_e(G)$

$$(\Psi_{\ast e}X_e, \Psi_{\ast e}Y_e) = (-X_e, -Y_e)$$
$$= (X_e, Y_e),$$

where (,) is the bi-invariant inner product on $T_e(G)$. That is, Ψ_{*e} is an isometry on $T_e(G)$. Note that L_a and $R_a(a \in G)$ are isometries with respect to the bi-invariant metric of G. Since

$$\Psi(x) = x^{-1} = (a^{-1}x)^{-1}a^{-1} = R_{a^{-1}} \cdot \Psi \cdot L_{a^{-1}}(x)$$

for each $x \in G$ $\Psi_{*a} : T_a(G) \longrightarrow T_{a^{-1}}(G)$ may be written as

$$\Psi_{\ast a} = (R_{a^{-1}})_{e} \cdot \Psi_{\ast e} \cdot (L_{a^{-1}})_{a}.$$

Thus Ψ_{*a} is an isometry. In consequence, $\Psi: G \longrightarrow G$ is an isometry. For each $g \in G$ define σ_g by

$$\sigma_g = L_g \cdot R_g \cdot \Psi$$
, that is, $\sigma_g(x) = g x^{-1} g$.

Then it follows that σ_q is the symmetry at G.

Proposition 3.6. Let G be a compact connected Lie group. Then each geodesic through the identity e of G is a one parameter subgroup of G. Furthermore every point of a connected Lie group G is a one parameter subgroup. Thus this geodesic is an one parameter subgroup and so G is a one parameter subgroup.([4])

Let M be a Riemannian manifold. For C^{∞} vector fields X, Y over M, the curvature operator R(X,Y) is defined by

$$R(X,Y) \cdot Z = \nabla_X(\nabla_Y Z) - \nabla_Y(\nabla_X Z) - \nabla_{[X,Y]} Z$$

for each C^{∞} vector field Z over M, where ∇ is the Riemannian connection of M.

Theorem 3.7. Let G be a compact connected Lie group and let \mathcal{L} be the Lie algebra of G. For $X, Y, Z \in \mathcal{L}$, Riemannian curvature operator equal to $\frac{1}{4}[Z, [X, Y]]$ with bi-invariant Riemannian metric.

Proof. Let ∇ be the Riemannian connection with bi-invariant metric of G. Take $X \in \mathcal{L}$ then $\nabla_X X = 0$. In fact, X_e define a unique one parameter subgroup $F: R \longrightarrow G$ such that F(0) = e and $\dot{F}(0) = X_e$. For a C^{∞} vector field Y over M,

$$\nabla_{X_e} Y = \frac{D}{dt} Y_{F(t)}|_{t=0}.$$

Hence

$$\nabla_{X_{\epsilon}} X = \frac{D}{dt} X_{F(t)}|_{t=0}.$$

F(t) is geodesic by proposition 3.6 and thus

$$\frac{D}{dt}X_{F(t)}=\frac{D}{dt}\left(\frac{dF}{dt}\right)=0.$$

This means that $\nabla_{X_e} X = 0$. Since our metric is left-invariant and X is also left-invariant, by Theorem 3.2 $\nabla_X X = 0$ everywhere on G. Since if X and Y are left invariant vector fields then so are X + Y and [X, Y], we have

$$0 = \nabla_{X+Y}(X+Y) = \nabla_X Y + \nabla_Y X \ (\nabla_X X = 0 = \nabla_Y Y).$$

If X and Y are left invariant, then

$$\nabla_X Y + \nabla_Y X = 0, \quad [X, Y] = \nabla_X Y - \nabla_Y X$$

By properties (*), the connection of a biinvariant metric on G is given by

$$\nabla_X Y = \frac{1}{2} [X, Y].$$

For X, Y and Z in \mathcal{L} , since

$$\begin{split} \nabla_X (\nabla_Y Z) &= \frac{1}{2} [X, \nabla_Y Z] = \frac{1}{2} [X, \frac{1}{2} [Y, Z]] \\ &= \frac{1}{4} [X, [Y, Z]] \\ \nabla_X (\nabla_X Z) &= \frac{1}{4} [Y, [X, Z]] \\ \nabla_{[X,Y]} Z &= \frac{1}{2} [[X, Y], Z] \end{split}$$

基礎科學研究

we have the following;

.

$$\begin{split} \mathcal{R}(X,Y) \cdot Z &= \nabla_X (\nabla_Y Z) - \nabla_Y (\nabla_X Z) - \nabla_{[X,Y]} Z \\ &= \frac{1}{4} [X,[Y,Z]] - \frac{1}{4} [Y,[X,Z]] - \frac{1}{2} [[X,Y],Z] \\ &= \frac{1}{4} \{ [X,[Y,Z]] + [Y,[Z,X]] + [Z,[X,Y]] \} + \frac{1}{4} [Z,[X,Y]] \\ &= \frac{1}{4} [Z,[X,Y]]. \end{split}$$

Theorem 3.8. Let G be a symmetric Riemannian manifold and let \mathcal{L} be the Lie algebra of G. Then for $X, Y, Z, W \in \mathcal{L}$ Riemannian curvature tensor

$$R(X, Y, Z, W) = -\frac{1}{4}([X, Y], [Z, W])$$

with bi-invariant Riemannian metric.

Proof. From the result $R(X, Y, Z, W) = (R(X, Y) \cdot Z, W)$, using the property ([X, Y], Z) = (X, [Y, Z]) ([6]) and Theorem 3.7, we have

$$R(X, Y, Z, W) = -\frac{1}{4}([[X, Y], Z], W)$$
$$= -\frac{1}{4}([X, Y], [Z, W]).$$

REFERENCE

- [1]. Daniel Martin; Manifold Theory an introduction for Mathematical Physicist. Ellis Horwood Limited (1991)
- [2]. K Yano & M Kon ; Structures on Manifold. World Scientific Publishing Co. (1984)
- [3]. R. L. Bishop; Geometry of Manifold. Academic Press, INC. (1964)
- [4]. W. M. Boothby; An Introduction to Differentiable Manifolds and Riemannian Geometry. Academic Press (1975).
- [5]. W. Klingenberg; Riemannian Geometry. Walter de Gruyter (1982)
- [6], S. Helgason; Differential Geometry, Lie groups, and Symmetric spaces. Academic Press. (1962)
- [7]. F. W. Gehring, P. R. Halmos, C. C. More; Modern Geometry Methods and Applications (I, II). Springer-Verlag (1984).