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The maximal column rank of an m by n matrix over a semiring is the maximal
number of the columns of A which are linearly independent. We characterize the linear
operator which preserve the maximal column ranks of nonnegative integer matrices.

1. Introduction

Suppose F is a field and M is the set of all m x n matrices over F. If T is
a linear operator on M and f is a function defined on M, then T preserves f if
f(T(A)) = f(A) for all Ain M.

Frobenius (1897), Marcus and Moyls (1959), Marcus and May (1976), Marcus
and Purves (1959), Beasley (1970), Minc (1976) and Kovacs (1977) character-
ized those linear operators on M that preserve : determinant and characteristic
polynomial, rank, permanent, the rth symmetric function (r > 4), and so on
(respectively).

In 1983, McDonald found that the characterizations of the first three func-
tions were valid over more general rings. Typically, the first operations that
come to mind for preserving f turn out to be the only ones. For example, T
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prescrves the characteristic polynomial if and only if T is a similarity transfor-
mation, transposition, or composition of such operations.

In 1984 and 1985 analogues of Marcus and Moyls’s work on rank were ob-
tained by Beasley, Gregory, and Pullman [3,4] for certain type of semirings.
These semirings included such combinatorially significant systems as the non-
negative integers and the Boolean algebra of two elements.

There are many papers on the study of linear operators that preserve the
rank functions of matrices over several algebraic structures. We can find them
in [5].

Recently Song characterized linear operators that preserve the column rank
[7], and those that preserve the maximal column rank (6] of matrices over binary
Boolean algebra with Hwang and Kim.

In this paper that work is continued. We obtain characterizations of those
linear operators on m by n matrices over nonnegative integer semiring that
preserve the maximal column rank.

2. Preliminaries

A semiring is essentially a ring in which only the zero is required to have
an additive inverse. Thus all rings are semirings. The nonnegative integers,
Z*, and nonnegative reals, R+, (with the usual arithmetic) are combinatori-
ally interesting examples of semirings. Algebraic operations on matrices over a
semiring and such notions as linearity and invertibility are also defined as if the
underlying scalars were in a field.

The set of m x n matrices with entries in Z7% is denoted by My, 2(Z%).

A set of vectors (m x 1 matriecs) is a semimodule [1] if it is closed under
addition and scalar multiplication. A subset W of a semimodule V is a spanning
set if each vector in V can be written as a sum of scalar muitiples (i.e. a linear
combination) of elements of W.

The m x n matrix all of whose entries are zero except its (4, j)th, which 1,
is denoted E;;. We call E;; a cell. The set of cells spans M, n(Z7). Let e; be
the n x 1 matrix with a "1” in the ith position and zero elsewhere. We say that
A is the column matriz if A = ael for some 1 <1 < n and some a € M, 1 (Z7F).

The column space of a matrix A € My, ,(Z%) is the semimodule spanned by
the columns of A over Z*. Since the column space is spanned by a finite set of
vectors, it contains a spanning set of minimum cardinality; that cardinality is
the column rank [2] of A, x(A).

A set G of vectors over Z7 is linearly dependent [2] if for some g € G, g is a
linear combination of elements in G — {g}. Otherwise G is linearly independent.

The mazimal column rank [5], ¥(A), of an m x n matrix A € Mp, o(Z7) is
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the maximal number of the columns of A which are linearly independent over
A
It follows that
0< x(4) <¥(4) <n (11)

for all m x n matrix A over Z*.
The inequality in (1.1) may be strict over Z +. For example, we consider the
matrix )
A=11,23

over Z+. Then the column rank of A is one, while the maximal column rank of
it is two since the last two columns of A are linearly independent over A

Hwang, Kim and Song [6] compared the column rank and the maximal
column rank for matrices over certain semirings, and found that except for small
values of m and n, the two ranks did not agree in general. In particular, they
obtained the following relations between column rank and maximal column rank
over Mm n(Z7).

Theorem 2.1. ([6]) Let a(Z*,m,n) be the largest k such that forallm xn
matrices A over Z%, x(A) = ¥(A) if x(A) £ k and there is at least one m x n
matriz A over Zt with x(A) = k. Then form > 1,

1 if n=1
a(Zt,mn) = 2 if n=2
0 if n>3

If A is a matriz over Zt and A= ua®, then a,u are called right and left factors
of A respectively.

Lemma 2.2. For A € Mma(Z%),¥(A) =1 if and only if A can be factored as
uat for some nonzero u € Mm1(Z%) and a € M 1(Z7) with P(at) = 1.
Proof. If (A) = 1, then there exists one column a of A such that all the other
columns a, are linearly dependent in each other, and hence all a; are expressed
as a scalar multiple of ax, that is a; = o;ax for some a; € Z*. Therefore
A = agloy, -, anl.

Let u = ag,a’ = [a1, -, an). Then the fact that ¥(at) = 1 follows from
Y(A) =1

The converse is clear.

3. Maximal column rank preserver over M, .(Z")

A function T mapping M »(Z7) into itself is called an operatoron M a(ZT)
The operator T
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(1) is linear if T(xA + BB) = aT(A) + 8T(B) for all a,f € Z* and all
AyB € Mm,n(Z+)
(2) preserves mazimal column rankif (A) = Y(T(A)) forall A € Mm o (Z7).
(3) strongly preserves mazimal column rank 1 provided that
Y(T(A)) = 1 if and only if (A) =1 for all A € M, o (Z7).

In this section we obtain characterizations of the linear operator which pre-
“Sserves maximal column rank over nonnegative integer matrices.

Lemma 3.1. Let A = h(e;)t, B = h(ez)' be the matrices in My, (Z%) with
h € My 1(Z%). Suppose T is a linear operator from My, n(Z7) into itself which
strongly preserves mazimal column rank 1. If T(A) = ua!, T(B) = vb?, where
al = [a1, " ",an),b* = [b1,--,bs] and cu = dv for some nonzero c,d € Z7,
then a;b; = 0 for some i.

Proof. Suppose to the contrary that a;b; # 0 for all <. Since cu = dv, we have

dT(aA + BB) = adua®+ Bdvb’ = adua’ + Scub’ (3.1)
= u(ada+ Bcb)t.

By permuting columns, if necessary, we may assume that b, < b; for all 1
and a; < a; for all j such that b; = b;. Since c and d are nonzero, we have for
all sufficiently large 3, that da; + 8b,c < da; + Bb;c for all i. Since dT(A + 5B)
has maximal column rank 1 for all 3, any two columns are linearly dependent
over Zt. Thus one column is a scalar multiple of the other column for any two
columns. Since ¥(A + 3B) =1, from (3.1) we have

(day + Bbic)|(da; + Bbic) (3.2)

for sufficiently large 3, and all i. Choose k large and let 8 = dka;. Then
(day + dkaybic)|(da; + dka,b;c) for all i by (3.2). So we have ayfa; for all i. It
follows that we may assume that a; = 1. Since a; = 1 and b; < b;,ad +b1c <
ada; + bic for all a and all i. Thus (ad + bic)|(ada; + bic) for all a and all
i since dT(aA + B) has maximal column rank 1. Letting a = b;c we have
(bicd + byc)|(bicda; + bic) for all <. It now follows that b;[b; for all ¢, so we also
may assume that b; = 1. Therefore we have

(d + Be)l(da; + Bbic) (3.3)

for all 8 and all ¢ from (3.2).
Suppose that a; # b; for some i. Say a; < b;. Letting 3 =b; and B =b; +1
from (3.3), we have that for some r,s € Z+

da; + b%c = r(d + b;c) (3.4)
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da; + (b? + b;)e = s(d + (b; + 1)c), (3.5)

respectively. Subtracting (3.4) from (3.5) we have
bic = (s —r)(d + b;c) + sc (3.6)

If s =7, then from (3.6) we have b; = s. So (3.4) gives

da; + s’c = s(d + sc) = sd + s°c,
that is, a; = s = b;, a contradiction since a; < b;. If s > r, then (3.6) gives

bic = (s — r)(d + bic) + sc > b;c,
a contradiction. If s < r, then (3.6) gives

bic = (s — r)(d + bic) + sc < sc.
So b; < s < r. From (3.4) we have

da; + bfc = 7(d + b;c) > s(d + bic) > sd + b,-zc,

that is, da; > sd. Thus we have a; > s > b;, which contradicts a; < b;.
For the case b; < a;, we also get contradictions by symmetric arguments.
Thus a; = b; for all 4, that is, a = b. Then aA + $B has maximal column
rank 2 for relatively prime positive integers a and S since the first two columns
of @A + 3B are linearly independent. But

T(aA+BB) = aT(A)+ BT(B)
= qua’+ fGvb!
= (au+ fv)at

has maximal column rank 1 since a® has maximal column rank 1 from the con-
struction. Hence we have a contradiction that T strongly preserves maximal
column rank 1.

Lemma 3.2. Let T be a linear operator from My, ,(Z) into itself. If T strongly
preserves mazimal column rank 1, then T maps column matrices to column ma-
trices.

Proof. Suppose to the contrary that T maps a column matrix to a matrix
which is not a column matrix. Say X; = x(eq)* and T(X;) has more than one
nonzero column. Foreach 1 < i < n,let X; = x(ei)‘. Let S = {1,2,---,n}
and let S; = {j : the jth column of T(X;) is zero for all 1 < i < n}. Then
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for cach i € S — Si, there is a j(i) such that the ith column of T(Xju)) is
not zero. Now T(X)) has at least two nonzero columns, say columns k; and
k. Let So =S — Sy — {k1,k2}, and let A = X; + 3,5, Xj;). Note that for
any k € § — 51, the kth column of T(A) is nonzero. Further, since A consists
of at most n — 1 distinct summands, each of which is a column matrix, there
is at least one zero column in A, say the ith. Let B = X;. Since T(A) has
_zero columns only corresponding to indices in Sy (where T(B) also must have
a zero column) we can restrict our attention to those columns in T(A) that are
nonzero ; hence we lose no generality in assuming that T'(A) has no zero column.
Thus, since A, and hence T(A), has maximal column rank 1, T(A) = ua®, where
a' = [a1, "+, ans] has all nonzero entries which are linearly dependent, and some
u; # 0. Let T(B) = vbt with b® = [by,- -+, bs]. Now we consider two cases:
Case 1) Assume that cu # dv for all nonzero ¢,d in Z*+. Since aA + B has
maximal column rank 1 for any positive integer a,

T(aA + B) = [agju + biviaaau + bav| - - - |aazu + bnv]
has also maximal column rank 1. Thus we have, for some fixed j,
aagu + bev = pp(aaju + b;v)
for some positive integer, px,k =1,---,n. If ax # pxa; for some k, then
ajar — prajlu = |peb; — bilv,

which is a contradiction to the condition that cu # dv for all nonzero ¢,d in Z+.
Thus ax = praj and bg = pibj,k = 1,---,n. That is, a = a;w and b = b;w,
where wt = [u), -+, ] with Y(w?) = ¥(a') = 1. Then ¢(T(aA + BB)) =
Y((aaju + Bbyv)wt) = 1 for arbitrary o, in Z*. This contradicts that T
strongly preserves maximal column rank 1 since aA 4+ 3B has maximal column
rank 2 for relatively prime « and 8 in Z¥.

Case 2) Assume that cu = dv for some nonzero ¢, d in Z*. Since T(A) = ua’
has maximal column rank 1, all the columns of a! are linearly dependent. So,
without loss of generality, we can assume that a; = 1. For T(B) = vb?, we shall
show that b; £ 0 for all i.

Suppose b; = 0 for some i. Choose j such that b; = 0 and a; < aj for all h
such that by, = 0. Since

dT(A+ B8B) = d(ua'+ Bvb")
= ulda, + Bcby,das + Bcba, - -+, dan + Beby]

has maximal column rank 1 for all 3, choose 3 such that day + Bcby > da; for
all k with b, # 0. Thus there exist distinct integers v, ¢ such that for fixed &
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with by # 0,
day + ﬂcbk = 'ydaj (37)

and
day + (B + 1)cbg = 8da;. (3.8)

subtracting (3.7) from (3.8), we have
cbi. = (6 - 7)da,. (3.9)

Further, if j # 1, then by # 0. For, if b; = 0, then a; = 1 is the minimal entries in
a and hence j = 1 from the construction of a;. So, for k = 1, da; + Bcb, = 11 da;
from (3.6). Since daj|cb; from (3.9) for k = 1, it follows that daj|da,, that is,
ajia;(=1). Thus a; = 1. So we may assume that j = 1.

Now,

cT(axA+ B) = [cau|cauas + cvbs|---|caua, + cvby]
= vad,adas + cbs, -, ada, + cby]

must have maximal column rank 1 for all . Thus there are -y; such that ada; +
cb; = v;(ad) for all 1.

It follows that ad|ch; for all a, and all ¢ = 1,---,n, a contradiction since
b; # 0 for at least one 1.

We now have shown that b; # 0 for all i. Now, letting A = X, and B =
X;,7 =1,---,n and j # i, the above argument implies that T(A) and T(B)
have no zero columns. This contradicts Lemma 3.1.

Hence the two cases show that 7" maps column matrices to column matrices.

Theorem 3.3. Let T : My n(Z%) — My, n(Z1) be a linear operator. Then
T strongly preserves mazimal column rank 1 if and only if there erist Q €
M, m(Z1) which is nonsingular as a real matriz and a permutation matric
Pe M, .(Z%) such that T(A) = QAP for all A € M,, ,(Z7).

Proof. Suppose there exist @ and P such that T(A) = QAP for all A €
M, »(Z7%) and A has maximal column rank 1. Then A = xa® with ¥(a?) = 1.
That is, all the columns in a! are linearly dependent in each other. Let P!
correspond to a permutation 7 € S,,. Then

QAP = Qx(Pta)

and the columns of (Pta)* are linearly dependent in each other. Hence QAP has
maximal column rank 1. Further, assume that QAP has maximal column rank
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1. Since P is a permutation matrix in M, ,(Z%), multiplying a permutation
matrix P! on the right hand of QAP does not change the maximal column rank
of QAP. Hence QA has maximal column rank 1. Therefore all the columns Qa;
are linearly dependent with A = [a,,---,a,]. Thus for any two columns Qax
and Qay, of QA we have Qa;, = riQay, or Qay = r,Qay with i, 7, € Z1. Hence
ay = rea, or a, = rpa over real field and hence over Z% since Q is invertible
as a real matrix. That is, ¥ (A) = 1. Thus T strongly preserves maximal column
““rank 1.

Conversely, suppose T strongly preserves maximal column rank 1. Let X; =
x(e;)t, i =1,---,n, for some fixed x € (Z+)™. By Lemma 3.2, T(X;) = y(er(;))*
where 7 : {1,---,n} — {1,---,n}. If 7 is not a permutation, then oT'(X;) +
BT (X;) has only one nonzero column for all o, 8 € Z*. That is, T{(aX; + B8X;)
has maximal column rank 1 for all ¢, 3, a contradiction since aX; + 8X; has
maximal column rank 2 for relatively prime a, 3 € Z*. Thus « is a permutation.
So without loss of generality, we assume 7 is the identity permutation, so that
T(X:) = u(e;)! and T(X2) = v(e2). Ifu; # 0and v; = 0, or vice versa, u(e;)'+
v(ez)! has maximal column rank 2, contradicting that T strongly preserves
maximal column rank 1 since X; + X3 has maximal column rank 1. Thus u; =0
if and only if v; = 0. We assume without loss of generality that 0 # u; < v;.
Since X; + X7 has maximal column rank 1, v = ru for some r € Z*. If r # 1,
choose p relatively prime to r, then

T(pX1+ X2) = [pul|v|O]---|0]
= [pujrul0|---[0]

has maximal column rank 2 while pX; + X, has maximal column rank 1, a
contradiction. Thus 7 = 1. That is, u = v. It follows that T(X;) = u(e;)".
In particular, when X; = E;;, there exists some vector u; such that T(E;i) =
u;(e;)* for all 4,5. Let Q be the matrix [u;|us]---|u,]. Then for an arbitrary
Ae M, .(ZY),

T(A) = Z Z a;;T(Eji)

ij=11i=1

Z Z ajiuj(ei)‘.

=1 =1

So the (k, 7) entry of T(A) is 3 i, aijuk:. The (k,j) entry of QA is 3" | ukiaij,

which is the (k,j) entry of T(A4). Thus, T(A) = QA for all A € M, o(Z7).
Further we show that @ is nonsingular as a real matrix. Suppose that

Q@ = (gij) is singular. Say, @x = 0 for some nonzero real vector x. Since x can
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be considered as a solution of the homogeneous system of linear equations with
coefficients ¢;; € Z*, we may assume, without loss of generality, that the entries
of x are all intcgers. So let @ = 1 + maXi<i<m |Ti], and z = aj + x, where j is
the vector of all 1's. Then z € M,, ;(Z%) and Qz = Q(aj + x) = Q(aj). Thus
T(ze! +ajeb) = Q(zet) + Q(ajey) = Q(ajlet +Q(aj)el = Q(aj)(er +e2)* has
maximal column rank 1. Then z = kaj or kz = aj for some k € Z+. But then
Qz = 0 and hence T'(ze!) = 0, contradicting that T strongly preserves maximal
column rank 1. Thus @ is nonsingular as a real matrix.

Corollary 3.4. A linear operator T : My, n(Z%) — M, n(Z%) preserves
mazimal column rank if and only if there ezist Q € My, m(Z71) which is non-
singular as a real matriz and a permutation matric P € My ,(Z7%) such that
T(A) = QAP for all A € M, o(Z7).

Thus we have characterized the linear operator that preserve maximal col-
umn rank of nonnegative integer matrices.
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