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THE UNIQUENESS OF SOLUTIONS FOR DIFFERENTIAL
EQUATIONS ON THE WIENER SPACE

YoNG Sik YUN

ABSTRACT. We consider a differential equation on the Wiener space. A
capacity is defined by Ornstein-Uhlenbeck operator. We show the uniqueness
of solutions for some differential equation on the Wiener space using the flow
property and quasi sure convergences.

1. Introduction

The solutions for a differential equation generating by a vector field on R"
exist for all z € R™ and satisfy the flow property for initial values clearly (7]
The quasi sure existence of solutions on the Wiener space, e.g., the space of
R™-valued continuous paths starting at 0, that is the existence of solutions
for all initial values except in a set of (r,p)-capacity 0 for all r > 0 and
p > 0, has proved [7], and the solutions have a flow property quasi surely for
initial values [8]. Here the capacity is associated with the Ornstein-Uhlenbeck
operator.

Cruzeiro proved the almost sure existence of solutions having flow property
for some differential equation on R" [1]. She proved also the uniqueness of
solutions for the differential equation on Wiener space using almost sure flow
property [2]. In this paper, we show the uniqueness of solutions. But since
the uniqueness can be proved by the same way, we only prove the almost
sure flow property by different method to that of Cruzeiro using a finite
dimensional approximations and the quasi sure convergences proved in [§].

We use the notion of Sobolev spaces of Banach valued functions due to
Shigekawa [6]. To be precise, let (X, H, 1) be an abstract Wiener space and
A be a vector field on X which is, by definition, a mapping from X into H
smooth in the sense of Malliavin. Then under some conditions for A, the
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solutions Vi(z) of the following differential equation (1.1) exist for all ¢t € R,
quasi everywhere z (q.e. z in abbreviation) [7].

) [ (@) = A3e) ),

Vo(z) = 0.

The problem was first treated by Cruzeiro [1] and she established for a
class of vector fields the existence and the uniqueness of solutions Uy(z) for
p-almost every (p-a.e.) r € R™ which satisfy the almost everywhere flow
property: for every t € R, (Uy).p¢ is absolutely continuous with respect to p
and satisfies

(1.2) UioUs(z) = Uppo(z) forall t,seR, u—ae zeR™

The flow property has proved for u — a.e. ¢ € X under a little stronger
condition. Then using the flow property, Cruzeiro proved the uniqueness
of solutions for differential equation on Wiener space [2]. We will show the
above solutions Vi(z) of (1.1) satisfy the flow property (1.2) almost surely
by different method to that of Cruzeiro in the following manner :

UyoUs, = Usys, where Ui(z)=Vi(z)+z, forall t,seR.

We assume the hypothesis of Theorem 2.3 in this paper. We take a se-
quence A, converging to A such that A, depends only on finite number of
coordinates and takes values in finite dimensional subspace of H. Denot-
ing a solution for A, by Vt(")(:c) = Ut(n)(:r) — z. We proved V,(n) converges
quasi surely and the limit satisfies (1.1) [7]. Since the equation (1.1) can be
rewrited as

t
UM(e) == + / An(UM(2))ds,  for U™,
0

and

t
MU (2)) = UM (2) + / A USDUM (z)))dr, for UM UM(2)),
Q
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for the almost sure flow property, we prove f(: An(Uﬁn)(U,(")(:c)))dr converges
to

fot A(U,(U,(x)))dr almost sure in the section 3 using some finite dimensional
approximations prepared in the section 2 and quasi sure convergences proved

in (7).

2. Existence of solutions and approximations

We denote by u the standard Gaussian measure on R”. By a vector field
on R", we mean a Borel measurable function B : R"® 5> z — B(z) € R™.

Definition 2.1. Let A4, : R® — R” be a vector field in L?(g). The di-
vergence of A, with respect to u (if it exists) is the element §,A4, € L%(u)
satisfying

/ OuAn - udp = (An|Vu)dpu
n mn

for all u € Wi (u) where W(u) be the space {u € L2(u) : ||Vu|| € L?*(u)}
with the norm ||u]|pz + ||Vul| 2.

For the existence of the flow Ut(A")(z), the following theorem has been
proved.

Theorem 2.2. (Yun (7], Theorem 3.5) Suppose that A, € C* and

(1) Ym=0,1,2,--- ,VA > 0, fj. exp()-||[V™A,(2)]|)dp(z) < +oo,

(ii) YA > 0, f3. exp(M8,An(z)|)dp(z) < +o0.

Then a solution of the below system of differential equations (2.1), (2.2),
(2.3) and (2.4) below exists for all ¢ € R starting for all z € R".

(21)  TVi(z) = Au(Vile) + ),

(2.2) (—id;VVt(:z) =VA,(Vi(z) + z) - VVi(z) + VA, (Vi(z) + 2),
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(23)  TLVi(x) = LALVi(2) +2) + VA(Vi(z) + 2) - LVi(z)

+ ZV L An(Vi(2) + 2) - 0,V (2) - VA (z)

+2) 0V Au(Vi(z) + 2) - 0V (a),
Vo(z) = VV(z) _—i LVy(z) =0.

More generally, in addition to (2.1)~ (2.3), we consider the following
system of differential equations to be satisfied by

[L"V"V(z):m=0,1,--- ,N, n=0,1,---,2N, 2m+n <2N]:

iLmVth — VA" . Lmvnm

(24) —

+Em,n(LivjAn,lerV't cq = 0’1’... ,m,
j:o’la"'anv l=0’l’-“’m—1’
r=0,1,---,n, 2i4+j<2m+n,

2047 <2(m — 1)+ n),
L™"V™o(z)=0, m=0,1,--- k, n=0,1,--- 2k,
2m+n <2k, k=2,3,---,N,

where E™" is some polynomial which can be obtained successively (see the
proof of Theorem 5.5, Yun [7]).

Let (X, H,u) be an abstract Wiener space introduced by L. Gross (3]
where
(1) X is a real, separable Banach space with the norm || - ||,
(ii) H is a real, separable Hilbert space densely included in X with the inner
product (z,y) gy,
and
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(iii) p is the standard Gaussian measure, i.e., the Borel probability measure
on X such that

/;( exp{i(h,z)}u(dz) = exp(—%(h, hYu)

where h € X* C H and ( , ) is a natural pairing of X* and X. Note that
izl < k|z|g = k\/{z,z)y, = € H for some constant k¥ > 0 so that the
inclusion map i : H — X is continuous. Hence we have X* ¢ H* = H and
we regard X* as a subset of H.

The Sobolev space WP on X(1 < p < o) defined in [5] is the space of
functions ¢ on X such that ||¢||s(,) and for all 1 < i < r, IV SllLr(u) < o0
with a norm

18llrp = [IllLou) + Z ||Vi¢||L»(,‘;£;2)(H;G))-
=1

We denote by W2 the space N, WP”. Let f be a vector field on X that is a
mapping from X into H. If f € L?(X; H), we denote by df the divergence,
l.e., 4 is the adjoint operator of V for the Wiener measure, more precisely,
6f is the element of L?(X) (if it exists) satisfying

| esédu= [ (7196

for all function 8 € W2(X).
For {0, oo]-valued lower semicontinuous (1.s.c. in abbreviation) function h,
define C, ,(h) by

Crp(h) :=inf{|Jul? ;;u € WF(B),u > h, p-a.e.}

and for an arbitrary [—oo,00]-valued function f (not assumed to be pu-
measurable),

Crp(f) :=inf{C; p(h); h is Ls.c. and h(z) > |f(z)|,Vz € X}.

For a set G, we define

Crp(G) = Crp(lc).
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Here 15 denotes the indicator function of G.

We say that a property holds quasi-everywhere (q.e. in abbreviation) if
it holds except on a set of capacity 0 for all », p. We note that the following
property holds for Sobolev spaces on an abstract Wiener space.

WP(B)NCy(X — B) is dense in W?(B) and 1 € W}F(B).

Then it has been proved by I. Shigekawa that any v € WP(B) admits a
quasi-continuous modification and denoting it by 0, it holds that

Crp(lloll8) < I0]I7,

and the Chebyshev type inequality holds

Do 1
Crp(lioll 2 A) = 5 lIoll,-

Using the above facts, we have the following theorem.

Theorem 2.3. (Yun (7], Theorem 5.5) If 4 is a vector field on X satisfying
(1) A€ WQ(X;H) and VA > 0, [, exp(A|A(z)|])dp(x) < 400,
({)VA>0,Vn=1,2,---, [, exp(A||[V" A(z)]|)dpu(z) < 400 and
(iii) VA > 0, [, exp(A6A(z)|)dp(z) < +oo,

then Vi(z) exists for all t € R, q.e.z satisfying the differential equation (1.1).

We can easily prove the following general facts for flows on R"™ (Cruzeiro
(1], Lemma 3.1.1).

Lemma 2.4. Let A and B be C?-vector fields on R™ generating the global
flows UA and UZ. Let h = A — B. Then the following (i) ~ (iv) hold.

(i) Ut =0/ o Ué’Za

where U%Z is defined by

(a%i’z)(w = 2'(Uy%(), Vi) ==,

and Z is given by

Z'(y) = (UEY (w)hU L (v)).
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(i) Ut = (U2F)oUE.

(iii) Urz)-UB(z) = - /0 ) (US ) (U2 (W) - hUB_(U % (y)))de,

where y = UB(z).

(v)  SUSP(@) = ~(UPY (WY () - (4 - BYUD(2)

A
- [ |5 056) (4-BXUE )

d

+ (UL 4¢) () (A= B)(U_ ()| de,

where y = Ug’z(z).

In the following, we denote by Ut(") = U, Ut(m) = Ul U :=Up,- .
By Theorem 2.2, the field A,, has the flow Ut"l" = Ut( ") which can be defined
for all t € R starting for all z € R™. Further we have, by the formula of
change of variables (Theorem 2.2),

d(Ut(n))*,Lt _ f (n) __n n
(2.5) T(m) = exp (/(; 6A(UZ, (x))df) = ki(z), zeR™

This flow is a transformation of R*. We must modify the transformation
on X and at the same time it does not change the formula (2.5).
We can set, for r € X,

r=y+z, =z2€H,.
If U,(") is the flow for A, defined on R", set

V() =UM (@) +y -2 = UM () - =
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Then

vi(z)

= = 4,V (2)+z) and VV(z)=0.

If ¢ is a function defined on H,, then we have QS(V,(")(x) +z)= ¢(Ut(")(a:)).
On the other hand, the measure p can be decomposed as g = py, ® v,
with v, defined on H;}. Then we have

/X BV ) + anlz)
-/ "L ([ V) byt 2)dien(2) ) o)

= /X W(z) - 1( / t 6An(U‘_’;’<w>)d¢) du(z).

Thus we have the following

M) 4. ,
d(v, fil)f Sk ) :exp(/o 6.4,1(V_('E‘)(x)+x)d§> = k™ (2).

(2.6)

We have proved the following equation (Yun (7], Lemma 5.4) :
lim [ sup / V™AL (VI (2) + z) — V'"A(")(Vr(l)(:l;)+:L‘)dep(:1:)] =0,
myi—=olre(o,t) JX

forall s,t € R (¢ >0, p>1)and m=1,2,---. Using the above lemma, we
can prove that

1— 0O

t
(2.7) lim / / ||V"‘A”(V,(")(:c) +2)— VA, (Vi(z) + z)||Pdu(z)dr = 0.
! 0 JX
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Lemma 2.5. Forall s,t € R and p > 1,

m t " (™ (z) +z) — () + z2)||Pdu(z)dr = 0.
! /O/XIIA (VA (2) + ) — A(Ve(z) + 2)|Pdpu(z)dr =0

n—oo

Proof. We have

(/{)t /XHA,I(V,(n)(x) +z) — A(V,(z) +$)||pdy(z)d7->l/p
: (/Ot /x 14n(Vi™ (@) + 2) = An(Vi(z) + a:)”"d,udr>l/p

¥ ( / t J 14uVe@) +2) = AV (@) +x>||ﬂdudr)l/p.

By (2.7), the first part of the right hand side tend to 0 as n — oco. Since the
second part is calculated by

lim /; /XHAn(Vr(:z) + 1) — A(Vi(2) + 2)||Pdpdr

n—oo

t
< / erllzs - 1A — Al%p,dr
0

< C(M)-||An — Al 0 as n — oo (by Theorem 2.2),

the proof is complete. O

3. Almost sure flow property on Wiener space

By Theorem 2.3, the solutions Us(z) = V(z)+z satisfying (1.1) exist q.e. z
which is a transformation on the Wiener space (X, H, ). In this section we
prove the almost sure flow property of Uy, that is UyoU, = Us4+, by using the
approximations on R™ and the quasi sure convergences. To be precise, let
Ut(n) be the solutions on R" satisfying the flow property Ut(") 0 Uﬁ") = U,(i),
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converges to Uys, q.e. T (see the proof of Theorem 2.3), we have to prove

that U,(") ) U,(") converges to Uy o Uy, a.e. £ as n — oo. Note that

t
U UM () = UM () + / AU U (2)))dr

and

U(Us(@) = Us(z) + / AU (U (2)))dr.

Since Ug")(z) — Uy(z), qe. z as n — oo, there is nothing to prove if we
prove that

t t
/ A (USHUM (2)))dr — / AU (Ug(z))dr, ae. z.
0

0

Preparing some lemmas, we prove the above convergence in the Theorem

3.3.

Lemma 3.1. Forall s,t € R (¢t > 0),

(31) lm [Sup / 142 (U (UM (2))) = AU (UL (2))]ldu

nl—oo|re(o,)

Proof. Using Lemma 2.4 and formula (2.6), we can prove the equation (3.1)
(see the proof of Lemma 5.1, Yun [7]). O

Lemma 3.2, Forall 5,z € R (¢t > 0),

(32) ‘/ / AU (2))) = AU Us(@))ldpu()dr = 0.

Proof. Taking subsequence {n;} C {n} with Ugnj)(a:) — Uq(z) a.e. z, then
An( 5")(l7§'lj)(x))) — A,I(U,gn)(Us(x))), a.e. T as J — 00. Since
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su " (M) p(ni)( P )dr
p/ /HA U U (@) du(z)d

swp/ 1E2 e - IR IY2 - 1| Al o dr

n,j
<oo, Vp21,

we have A, ( Urn)(U(n’)(x))) — A,,(U(")(Us(x))) in L%([0,¢] x X;X) as j —

001e

(33) lim / J WU ) = U Iz =0

Jj—oo

Note that

/ / AWMU U (2))) = An(U U)oy dps(2)dr
/ / AU (U (2))) = AU VS (@), dpe()dr
WS(UMU) (2))) = Au(U(Uo(2))|(n,5) d(z)dr.
+/0/X||A<, (U (2))) = AU Ua(@))lln. gy dis(z)

By the formula (3.3),

tim [ 40O ) - AUl )i

J—oC Jo

t
< tim [ [ AP0 @) = AU @)Dl diz)ar
X

J—oc Jo

Since
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n—oo

t
i [ [ 40RO @) - AU O o du(a)ir
0 JX
t
< Jim tim [ [ 140000 @)
n—ooj—oo Jy Jx
— Ap (UMUM@l (n,y die()dr,

we have the equation (3.2) by Lemma 3.1. O
Theorem 3.3. V(z) = U,(x) — z has the flow property for u —a.e. z € X.

Proof. By Lemma 3.1 and Lemma 3.2, we only have to prove that for all
s,t € R (¢t >0),

n—0o0

im t LU M (2))) — A(U(Us(z z)dr = 0.
! / /XIIA (U (2))) — AUUs())||dp()dr =0

Note that

/0 /X 4L (US (U (2))) — AUHUs(2)))l|dp(z)dr
‘ A, (n) (n) I — A, (n) oz dulz)dr
s/o /XII4 UPU (2))) - AU (U(2)lldu(z)d
+ / /Y AW (U (Ua(2))) — AU Us(2))l|dp(z)dr.

By Lemma 3.2, the first integral of right hand side tends to 0 as n — oo and
the second integral is calculated by

/0 /X AU U, ())) — AU (Us(2)))|dpe()dr

S/Otllksllu-(/XIIAn(Uf")(w))—A(Ur(x))llzdu(r))mdr



and

/X | 4n(U (2)) — AU ()| dp()
(") (2)) = Ap(Un(z))|2du(z
S2</XllAn(Ur (2)) = An(Un(2))|dp(z)
X bt r\T 2 T .
n /X 14n(Un(2)) = AU (2))I12du( ))

By (2.7), Lemma 2.5 and

/X 14u(U(2)) = AU (2))]2du(c)

1/2
< |krllp2 - </ [|An — A||4d,u) —0 as n — oo,
X

the proof is complete. O
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