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Abstract

It is shown how the pole-assignment problem in m-input, p-output, nth order linear (strictly proper) systems
by real output feedback gains can be modeled in real Grassmanns pace. For the parametrization in real
Grassmann space, the so-called Plicker matrix formula Lk = a is applied (where L indicates Pliicker matrix, k
indicates extended static output feedback (SOF) vector whose elements are defined in the Grassmann coordinates
constrained in some nonlinear equations, called quadratic Pliicker relations (QPRs), and a indicates arbitrary real
coefficient vector of closed-loop characteristic polynomial). It is shown that under full-rank of some Pliicker
sub-matrix, rank(L.s) = n, as a necessary condition of exact SOF pole-assignment, a row-reduced unity diagonal
formula (symbolized, L. kes = @ ) of Lk = a is formulated, and the row-reduced unity diagonal formula
associated with QPHs plays an essential role for complete parametrization of the SOF pole-assignment problem.

An exemplar of a 2-input, 2-ouput, 4th order system in this area is illustrated.

Index Terms

SOF pole-assignment, Pliicker matrix formula for closed-loop characteristic polynomial in SOF systems,
necessary condition of exact pole-assignment (EPA), real Grassmann space, complete parametrization in real

Grassmann space.

1. Introduction

The loop connections of SOF controller for m-input, p-output linear MIMO system, G(s), can be figured like Fig. 1.
In time domain analysis under the coordinates of state space,
T =Ax + Bu, y = Cx (1.1)

with real coefficient matrices A € R*", B e R"™ C e R”", the pole-assignment problem via SOF law u(#) =

- Ky(t) is usually analyzed in eigenspace formula of closed-loop characteristic polynomial {11,

pds) = det (sI - A - BKO.
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Fig. 1. Outlook of SOF controller for MIMO system

In this state space framework, the complete feature of SOF pole-assignability is hardly obtained in MIMO
system case, but only generic feature has been known whose generic pole-assignability covers almost all systems,
even if mathematical algorithm like Schubert enumerous calculus is applied [2-4). For rigorous examination of this
genericity problem, “a Grassmann invariant” as a complete system invariant was developed in [5, 6]. They
observed that the genericity problem in pole-assignment would be reflected (or checked) in some formula of
Grassmann invariant, because it is associated with the closed-loop characteristic polynomial, pc(s). As expected,
they could derive “a real matrix form” (called, Pliicker matrix) from the Grassmann invariant, and showed in
strictly proper systems that the full-rank condition of a sub-matrix of Pliicker matrix becomes a new necessary
condition of “exact” pole-assignment (EPA) in addition to the well-known necessary condition of EPA, mp = n
[6, Theorem 53]. In other words, using exterior algebra in [5, 6], it is concretely exhibited that the closed-loop

characteristic polynomial pc(s) can be described under the coordinates of Grassmann space by

pds) = b(s)Lk (1.2)

nl (n+])x(g +1)

where b(s) = [§" s - s 1] is a basis vector, L € R indicates Pliicker matrix, and k = [1 ki) ... Kimp)

kimpstr .. kipol' is extended SOF vector whose elements are defined in “inhomogenized coordinates of Grassmann

m+ p) _

space, Grass (m, m+p)” where o =( m

From (1.2), n number of SOF equations for pole-assignment (P-A) in characteristic polynomial pAs) = s" +

n-1

ais + -+ apys + a, are transformed into “a SOF vector equation” like

Lk = a (1.3)

where a = [1 g, ... a,)'. In (1.3), it is observed that the real matrix L of k presents “a real Grassmann parameter”

for P-A [9), because the elements of k are defined on the coordinates of Grassmann space associated with
constraints of QPRs. A followed natural question of numerical construction of L (ie.,, numerical construction

algorithm of Lk) is outlined in next section 2.

Remark 1: The Pliicker matrix L is constructed on the base of minimal transfer function matrix G(s) having
McMillan degree n [6, section 4]. Therefore in the controllable and observable system with n states of A € R"",

the dimension of Pliicker matrix is obtained by L e R™V*V,
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2. Signal flow graph analysis of SOF loops and its application to Lk = a

In signal flow graph analysis in frequency s-domain [7, 8], the gain M between Us) and Yi(s) in SOF linear

systems over (negative) SOF law U(s) = - KY(s), called Mason's gain formula, is given by

Y.(s) v PA,
M= 2.
o) LZ:]] 3 (2.1)

where U(s) = [U)(s) UsAs) - Unis)]' is control input vector,

Y(s) = [Y)(s) Yuos) = Yo($)] is output vector,

v = total number of forward paths between Ui(s) and Y{s),

P, = gain of the k-th forward paths between Ui(s) and Yj(s),

4 =1 - (sum of the gains of all individual loops) + (sum of products of gains of all possible

combinations of fwo nontouching loops) - (sum of products of gains of all possible combinations

of three nontouching loops) + -
A = the cofactor value of 4 that is nontouching with the k-th forward path.

Let's symbolize the loop determinant 4 composed by constant ‘1" and all SOF loop gains by

A= 1_E[nm+E€.u~z)+2[m:n+"‘ (2.2a)
a 3 3

Then the sum of all individual loop gains E(,,l,, can be divided into two parts by “linear terms” and

(43

“nonlinear (multiplicative) terms” over the variables k;;, - , kn,- Single-path loops like {-Gy(s)k; for all i and Jj!

and multi-path loops like {-Gy($)kjGuls)ku, ~Gils)KisGulSulruts)Kui

4= 1- Z[rﬂl e — Efnu')mm' + Zi:[‘uz) +Z[.u;n e (2.2b)
@ x ‘ bl

etc.}. So we can rewrite the (2.3a) by

As seen in (2.3b), the loop determinant 4 is grossly divided into 3 parts [9:
{) One constant term ‘1,

v . S- I
ii) mp number of linear terms, (—Zt’"m “'-"’),
a

iii) (¢ —mp) number of nonlinear multiplicative (—Z[nm"‘""‘ +Ef,,.2,+2f',-(3,+~--) terms on the
a g ]

variables ki1, ==, Kmp.
Hence the linear vector equation Lk = a in (1.3) can be numerically constructed on the foundation of the 3

divisions of (2.2b) with multiplication of the open-loop characteristic polynomial p(s), through the equality.

pds) = p(s)d = b(s)Lk (2.3a)

Recall that in matrix fraction description (MFD) of transfer function G(s) = Di(s)'Ni(s). the closed-loop

characteristic polynomial p{s) is presented by

pds) = det [Di(s) + Ni(s)K] = det [D(s)] det I, + G(s)K]

= p(s) det (I, + G(s)K]

= pls) det [T(s)F] (2.3b)
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where T(s) = [I, G(s)] € R(s"™, and F = [I, KI € R™".  Applying “Binet-Cauchy Theorem” to det

[Ts) FI, the loop determinant A in (2.3b) is re-written by

(p._m) (’;)y ,2’)
det [T(s) FI =1 + t G;(s)k,;+ Y (i-th 2x2 minor of G(s))corresp. 2x2 minor of K )

oi=(L1) i=1

(mux (an p))

+ + Z (i-th zxz minor of G(s))(corresp. zxz minor of K ) (2.4)
i=1
where z = min{m, p}, and it is obtained from the equivalency (2.3a) = (2.3b) that
2 (i-th 2x2 minor of G(s)) « (corresp. zxz minor of K) + - + X (i-th zxz minor of (i(s))

* (corresp. zxz minor of K ) = —Eful"’"""+2f,,2+2€5;, +oe (25)

From (24) and (25), we can numerically construct the SOF vector equation Lk = a by filling the ingredients

like Fig.2, according to the descending orders of a, where | = 2, .. , z (= min{m, p}).
g N
: . 1
/ ; 5 \ P ()
; z s !
s : : ai
pis)+1 2p(s) » Gyi(s) Zpls) - (nonzero ¢ x ¢ minors of G(s)) k' =
H e e TP . L.
: : ki
s E E . Un-;
! \ s s ) . o
s ; ' -
kir
. J
Fig. 2. Internal ingredients of Lk = a
Remark 2 : From (25), the “interacting factors” ki, - . ki of k formulate the inhomogenized arbitrary-order
nonlinear equations (NEs) in equality forms
km-p-l‘l km-p-l‘.’ km-pvl.p
K, = ki ok = 'ku ks e k= krn-p~2,l k'n-p--’»’  Rmep2p
' ky o kop Tk kg 4 : : - :
kml km.’ kmp

where r =0 -mp in m = p systems. In [9, remark 2], it is also shown that these NEs are transformed
into inhomogenized quadratic equations (QEs). In other words, it is exposed that these inhomogenized NEs (or
QEs) are localized formulas of the so-called, homogeneous quadratic Plicker relations (QPRs) in k = [k ki) ...

Kimp) kimp-s ... ki, )l', through specifying (i.e., inhomogenizing) the SOF loops in 4 of Mason's formula in (2.1).
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3. Illustrations

Example 1. Consider a strictly proper system given by
, B=

1000
C=
[0100}

Step 1 (check pole-assignability (P-A) in Lk = a). G(s) (= C(sI - A)'B) is obtained by

Ll — N —

0
0
1
0

[~ = ]
-0 o O

0
1
0
1

DO -

s2 -1 1

G(s) = st—s' -1 st=s -1

From Fig. 2, Lk = a is constructed by

10 00 0 o | 1]
0.0 0 0 0 k“ a,
-1.1.0 00 0 k’-’ =|a,
0:0 -1 0 1 0 k” a,
-1 -1 0 1 0 0] ; | a, ]

L o

without constraint of k; —k,;ky +knk;, =0. In the rank test, rank{L.s) = 4, and the last column of Las is zero.
Step 2 (computation of K). From arbitrary desired pole positions of (s+D(s+1)(s+2)(s+2} = 0. the real
coefficients of the closed-loop characteristic polynomial pc(s) are obtained by a; = 6, a» = 13, a3 = 12, a; = 4.

From rank(L.s) = 4, the row-reduced unity diagonal form L.s kes = @’ is obtained by

100 0][k, 14
01 00||k,| _1|6
001 0]|k,| |19
000 1]k, 18

From (3.2), ki is calculated with k; = 14 x 18 - 6 x 19 and the real solution K (for negative feedback law,
U(s) = -KY(s)) is directly obtained by
K - k, k, _ 14 6
ky, 19 18

Remark 3: This example was given in [10] to demonstrate an eigenvalue-generalized eigenvector assignment
over some multiple eigenvalues, under necessary and sufficient condition of eigenstructure assignment by real
SOF. In our Grassmannian parametrization method within Lo kap = aas . it is revealed that this system has

intrinsically the exact pole-assignment (EPA) feature over any closed-loop poles as rank-one system, and whose
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real SOF gains are algebraically computable in deterministic way.

4. Conclusions

In this paper, the numerical construction algorithm of Pliicker matrix form Ik = @ is presented for modeling
SOF linear systems in real Grassmann space. It is also illustrated how the pole-assignment problem of a 2-input,

2-ouput, 4th order linear system by real SOF gains can be completely parametrized in real Grassmann space.
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