The Duality between 0-dimensional Spaces and 2-regular Semigroups

Hyun Jin-oh and Kim Chang-sik*

0-차원 위상공간과 2-정규 반군과의 관계 玄進五, 金昌植*

Summary

We introduce 2-regular semigroup and endow p-topology on it, and we have two functor H and C. We prove that π and p are H. C-universal map and H(Y, C(X)) is topological isomorphic C(X, H(Y)) for any 2-regular semigroup X and 0-dimensional space Y.

T. Introductin

It is well known ([4]) that a compact (realcompact, resp.) space X can be completely determined by the homomorphisms on the ring $C^*(X, R)$ (C(X, R), resp.).

In this paper, we will introduce a concept of 2-regular semigroup and show that C(X) is 2-regular for any topological space. Next, we are concerned with the analogous problem between 0-dimensional spaces and 2-regular semigroups

1. 2-regular semigroups

In this section, we can introduce the concepts of prime ideal and 2-regular semigroup which

師範大學 助教授 , 師範大學 講師*

Definition 1.1. A proper ideal I of a semigroup is said to be prime if whenever $xy \in I$, $x \in I$ or $y \in I$.

will be used throught this thesis.

Let $2=\{0,1\}$ be the two point semigroup such that xy=x if x=y and xy=0 if $x\neq y$ for any $x,y\in$ 2, then |0| is the unique prime ical of 2. For any semigroup X, let's denote P(X) for the set of all prime ideals of X, ϕ and X. Then there is an one-to-one correspondence between H(X), the set of all homomorphisms on X into 2, and P(X). Let T: H(X) \rightarrow P(X) be defined by T(f)=f⁻¹(0) for any f \in H(X) and define G: P(X) \rightarrow H(X) by G(I) the characteristic function for \ll I, the complement of I, for any I \in P(X). Then T \cdot G=1_{P(X)} and G \cdot T= 1_{H(X)}. In the fllowing, we may assume that H(X)= P(X), i.e., $f=f^{-1}(0)$ for any $f \in H(X)$, for any semigroup X. Moreover, for any f, $g \in H(X)$, $fg=(fg)^{-1}(0)=f^{-1}(0)=Ug^{-1}(0)$. Hence $\phi = \underline{1}, \underline{1}(x)=1$ for any $x \in X$, is the identity and $X=\underline{0}, \underline{0}(x)=0$ for any $x \in X$, is the zero element of H(X), and any element except ϕ has no inverse.

Proposition 1.2. Let X be a semigroup and $I \subset X$, then I is an ideal and ${}^{\mathfrak{C}}I$ is a subsemigroup of X if and only if I is a prime ideal of X.

Proof. Using the contraposition of the definition 1.1, we have an equivalence statement.

Proposition 1.3. Let X and Y be semigroups. $f:X \rightarrow Y$ a homomorphism and let J be a prime ideal of Y, then $f^{-1}(J)$ is a prime ideal of X.

Proof. Clearly J=g for some $g \in H(Y)$. Hence $g \cdot f \in H(X)$ and $f^{-1}(J)=g \cdot f$. Thus $f^{-1}(J)$ is prime.

Definition 1.4. We say that a semigroup X is 2-regular if the family H(X) is a <u>SG</u> mono-source, equivalently, for any $x, y \in X$ with $x \neq y$, there is a prime ideal I of X such that I contains either x or y.

In the following. <u>SG(2-reg)</u> is the category of semigroups (2-regular semigroups, resp.) and homomorphisms. In the above definition, the concept that H(X) is a <u>SG</u> mono-source means that $H(X) \subset \underline{SG}$ and whenever $x \neq y$ in X, there is a f ϵ H(X) with $f(x) \neq f(y)$, i.e., f(x) = f(y) for all $f \epsilon H(X)$ implies x = y.

Theorem 1.5. Let X be a semigroup and let $(X_1)_{i \in I}$ be a family of 2-regular semigroups. If $|f_i: X-X_i| |f_i$ is a homomorphism, $i \in I$ is a SG mono-source, then X is a 2-regular semigroup.

Proof. Take any $x, y \in X$ with x = y. Since $\{f_i \mid i \in I\}$ is a SG mono-source, $f_i(x) \neq f_j(y)$ for some $j \in I$.

Since X₁ is 2-regular, $g(f_j(x)) \neq g(f_j(x))$ for some g ϵ H(X₁). clearly $f \cdot g_j \epsilon$ H(X), and hence H(X) is a SG mono-source, i.e., X is 2-regular.

Corollary 1.6. 1) 2-reg is productive and hereditary.

2) Let X be a Hausdroff topological space and $2 = \{0,1\}$ be the two points discrete space and let C(X) be the set of all continuous function of X into 2. Let's define an associative binary operation on C(X) for any Hausdroff topological space X using the pointwise multiplication, i.e., for any f, $g \in C(X)$ and $x \in X$, (fg)(x) = f(x)g(x). For any x $\in X$, define a map $\pi_x : C(X) \rightarrow 2$ by $\pi_X(f) = f(x)$ for any $f \in C(X)$, then $\{\pi_x \mid x \in X\}$ is a SG monosource. Hence for any Hausdroff topology X, C(X)

is a 2-regular semigroup.

Lemma 1.7. Let X be a semigroup, then the following are equivalent:

1) X is 2-regular.

2) There is a <u>SG</u> mono-source $(f_i: X \rightarrow 2)_{i \in I}$, where I is an index set.

3) X is isomorphic with a subsemigroup of a power of 2.

4) For any $x, y \in X$ with $x \neq y$, there is a prime ideal I of X such that I contains either x or y.

Lemma 1.8. For any semigroups X, Y, P and Q, let $e: X \rightarrow Y$ be an onto homomorphism. $f: X \rightarrow P$ and $g: Y \rightarrow Q$ are homomorphisms and $m: P \rightarrow Q$ is an one-to-one homomorphism with $g \cdot e = m \cdot f$, then there is a unique homomorphism $I: Y \rightarrow P$ such that the following diagram commutes:

- 78 -

Proof. Note that if $K(e) = [(x,y) \in X \times X | e(1x) = e(y)] \subset K(f) = [(a,b) \in X \times X | f(a) = f(b)]$, then there exists a unique homomorphism $\overline{f} : Y \to P$ with $\overline{f} \cdot e = f$ by the Indeced Homomorphism Theorem Hence it suffices to show that $K(e) \subset K(f)$. Take any $(x,y) \in K(e)$, then e(x) = e(y), and hence g(e(x)) = g(e(y)) i.e., m(f(x)) = m(f(y)). Since m is ont-to-one, $f(x) = f(y) : (x,y) \in K(f)$.

Theorem 1.9. <u>2-reg</u> is epireflective on <u>SG</u>, i.e., for any semigroup, there is an onto homomorphism $i: X \rightarrow iX$ such that

1) iX is 2-regular; and

2) for any homomorphism $f: X \to K$, where K is a 2-regular semigroup, there is a unique homomorphism $\tilde{f}: iX \to K$ with $\tilde{f} \cdot i = f$.

Proof. Let $h = \bigcap H(X) : X \rightarrow 2^{H(X)}$ be defined by $h(x) = \Pr_x$, where $\Pr_x(f) = f(x)$ for any $f \in H(X)$, then h is a homomorphism.

Let iX be the subsemigroup of $2^{H(X)}$ whose underlying set is h(X) and let i be the correstriction of h by h(X). Then clearly i is an onto homomorphism. Since 2-regular semigroup is productive and hereditary, and 2 is 2-regular. iX is a 2-regular semigroup. Now, take any homomouphism $f: X \rightarrow K$ such that K is a 2-regular semigroup, and hence there is a one-to-one homomorphism $m: K \rightarrow 2^1$ for some index set I, by Lemma 1.4. For sach $i \in I$, $Pr_i \cdot m \cdot f \in H(X)$, and let $u_i = Pr_i \cdot m \cdot f$, then $Pr_i \cdot h = u_i$. Consider a commute diagram:

where j is the inclusion map on iX to $2^{H(X)}$ and g = $\bigcap Pu_i: 2^{H(X)} \rightarrow 2^1$ is the map with $P_i \cdot g = Pu_i$ for all $i \in I$. Since $(P_i)_{i \in I}$ is a <u>SG</u> mono-source and esch Pu_i is a homomorphism, g is a homomorphism. Thus $P_i \cdot g \cdot j \cdot i = Pu_i \cdot j \cdot i = P_i \cdot$ $m \cdot f$ for all $i \in I$, and so $g \cdot j \cdot i = m \cdot f$, for $(P_i)_{i \in I}$ is a mono-source. By the above Lemma 1.8, there is a unique homomorphism $\overline{I}: iX \rightarrow K$ with $\overline{I} \cdot i = f$. This completes the proof.

Definition 1.10. For any semigroup X, i: $X \rightarrow iX$ or iX is called the 2-regular reflection of X. If X is a 2-regular semigroup then i is an isomorhism, i.e., we consider x = iX = ${}^{t}P_{x}: H(X) \rightarrow 2$; $x \in X$. Now, define a functor i: $\underline{SG} \rightarrow \underline{2\text{-reg}}$ as the follow: for any semigroup X, Y and Z and any homomorphisms $f: X \rightarrow Y$, and $g: Y \rightarrow Z$, define $f^{+}: iX \rightarrow iY$ by $f'(P_{x}) = P_{f(x)}$ for any $x \in X$. Then for any x, $Y \in X$, $f'(P_{x}P_{x}) = f'(P_{xx}) =$ $P_{f(xy)} = P_{f(x)f(y)} = P_{f(x)}P_{f(y)} = f'(P_{x})f'(P_{y})$. $1_{iX}(P_{x}) = P_{x}$, and $(g \cdot f)^{i}(P_{x}) = P_{(g + f)(x)} = P_{g(f(x))} = g'(P_{f(x)}) = g'(f'(P_{x})) = (g^{i}f')(P_{x})$. Moreover, we have

Theorem 1. 11. The functor $i: \underline{SG} \rightarrow \underline{2\text{-reg}}$ is a full functor, i.e., when to every semigroups X and Y and to any homomorphism $g: iX \rightarrow iY$, there is homomorphism $f: X \rightarrow Y$ with $g=f^{t}$.

Proof. Since g is a homomorphism, for any $\mathbf{x} \in \mathbf{X}$ there is unique $y_x \in \mathbf{Y}$ with $\mathbf{g}(\mathbf{P}_x) = \mathbf{P}_y$. Define $f: \mathbf{X} \to \mathbf{Y}$ by $f(\mathbf{x}) = y_x$, then for any $\mathbf{a}, \mathbf{b} \in \mathbf{X}$, $\mathbf{g}(\mathbf{P}_{ab}) = \mathbf{g}(\mathbf{P}_a | \mathbf{P}_b) = \mathbf{g}(\mathbf{P}_a)\mathbf{g}(\mathbf{P}_b) = \mathbf{P}_{y_a}\mathbf{P}_{y_b} = f(\mathbf{a})f(\mathbf{b})$: and hence f is a homomorphism. Moreover, for any $\mathbf{x} \in \mathbf{X}$, $f^i(\mathbf{P}_x) = \mathbf{P}_{f(x)} = \mathbf{P}_{y_x} = \mathbf{g}(\mathbf{P}_x)$; $f^i = \mathbf{g}$.

2. Constructing a p-topology on semigroups

Let's endow topology on a semigroup X using

its prime iedals. Let $\& = \{J : J \text{ or } \&J \}$ is a prime iedal of X|, and let

 $\mathfrak{L} = \{ \& : \}$; & : is a finite subfamily of $\& \}$. Then $X \in \mathfrak{L}$ and \mathfrak{L} is closed under finite intersectin and $\& \subset \mathfrak{L}$, and hence \mathfrak{L} is a base for a topology on X. Let σ be the Topology on X generated by it.once again, we will simply denote(X. σ) by X and we will say (X, σ) is the <u>p-topology</u> on a semigroup X with its prime ideal. In particular the two point semigroup 2 has a discrete space with its p-tokpology.

Proposition. 2.1. For any semigroup X and Y with p-topology, every homorphisms on X to Y is continuous.

Proof. It follows immediately from the proposition 1.3.

Theorem. 2.2. For any semigroup X with p-topology H(X) is an initial source, and if for any topological semigroup, X, H(X) is initial in

<u>Top</u> the given topolpgy on X coincides with the p-topology.

Proof. By the above proposition 2.1, every element of H(X) is continuous. Moreover, for any prime ideal J of X there exists a homomorphism g on X to 2 with $J=g^{-1}(0)$. let Y be a space and let h: $Y \rightarrow X$ be a map such that $f \cdot h$ is continuous for any $f \in H(X)$. Hence for any prime ideal J of X, $h^{-1}(J)=(g \cdot h)^{-1}(0)$ is clopen in Y, and so h is continuous. Thus H(X) is initial. Let X' be the space on a semigroup X with p-topology. Then H(X') is initial. Hence $f=l_X: X \rightarrow X'$ is continuous.

' Theorem 2.3. Every binary operation on a semigroup with p-topology is continuous.

for any $f \in H(X)$, where m_X , m_2 are the binary operation on X and 2, respectively. By the above Theorem 2.2, H(X) is initial, m_X is continuous.

Proposition. 2.4. Every 2-regular semigroup X with p-topology is Hausdroff and vice versa.

Proof. Take any $x, y \in X$ with $x \neq y$. Then there is a $f \in H(X)$ with $f(x) \neq f(y)$. We may assume f(x) = 1 and f(y) = 0. Then $f^{-1}(0)$ and $f^{-1}(1)$ are disjoint open neighborhoods of x and y. resp.

Take any $x,y \in X$ with $x \neq y$. Then there exist open neighborhood U and V of x and y, resp. Hence there is a $I \in \pounds$ with $x \in I$ but $y \in I$. We may assume I is a prime ideal of X. Hence $I = f^{-1}(0)$ for some $f \in H(X)$, and hence f(x) = f(y). Thus X is 2-regular.

Corollary 2.5. 1) Every 2-regular semigroup X with p-topology is a topological semigroup.

2) Take any prime ieal I of X and $x, y \in X$ with $xy \in \mathcal{C}I$, then there are basic open neighborhood U and V of x and y, resp. with UV $\mathcal{C}I$.

Remark 2.6. 1) Every 2-regular semigroup X with p-topology is 0-dimensional. i.e., its space is Hausdroff and it has a base consisting of clopen subsets of X.

2) For any semigroup X, H(X) with p-topology is 0-dimensional compact semigroup.

Proof. 1) follow immediately frome the constructing. By 2.2. H(H(X)) is an initial monosource in Top, and hence we can consider H(X)as a subspace subsemigroup with p-topology, of a power of 2. i.e., a 0-dimensional semigroup. Moreover, $H(X) = \bigcap K(x,y)$, where $K(x,y) = f=2^{X}$; $f(xy) = f(x)f(y)_{i}$. Since 2 is Hausdroff. K(x,y) is closed and hence H(X) is closed. Hence H(X) is a 0-dimensional compat semigroup.

3. Adjoint functor

To each category <u>C</u> we also associate the opposite category <u>C</u>^{op}. The objects of <u>C</u>^{op} are the objects of <u>C</u>, the arrows of <u>C</u>^{op} are arrows f^{op} in one-to-one correspondence $f \rightarrow f^{op}$ with the arows of <u>C</u>. For each arrow $f: \rightarrow b$ of <u>C</u>, $f^{op}:$ $b \rightarrow a$ (the direction is reversed). The composite $f^{op} \cdot g^{op}$ =(gh)^{op} is defined in <u>C</u>^{op} exactly with the composite of defined in <u>C</u>. Let's denote <u>o-dim</u> for the category of all 0-dimensional spaces and all continuous maps.

From the section 1, 2, we have two functor 1) $H: 2-reg^{op} \rightarrow 0-dim$ defined by H(f): H(X) $\rightarrow H(Y)$ for any arrows $f: X \rightarrow Y$ in $2-reg^{op}$, where $H(f)(g)=g \cdot f^{op}$ for any $g \in H(X)$, and

2) C: $0 - \dim \to 2 - \operatorname{reg}^{\circ p}$ defined by C(f): C(X) \to C(Y) for any arrows f: X \to Y in $0 - \dim$, where C(f)(g)=g $\cdot f^{\circ p}$, for any $g \in H(X)$. The following definition is due to H. Herrilich [2].

Definition 3.1. Let $G: \not G \to \ G$ be a functor and let $B \in Ob(\mathcal{G})$. a pair (u. A) with $A \in Ob(\mathcal{G})$ and $u: B \to G(A)$ is called a universal map for B with respect to G(or a G-universal map for B) if for each $A' = Ob(\mathcal{G})$ and each $f: B \to G(A')$ there exists a uniqu \mathcal{G} -morphism $\overline{f}A \to g(A')$ such that the triangle

commutes.

Lemma 3.2. Let X be a topological space and let π be defined by $\pi(\mathbf{x}) = \pi_{\mathbf{x}}$ for any $\mathbf{x} \in \mathbf{X}$. Then X is 0-dimensional if and only if π is one-to-one.

Proof. Clearly a topological space X is 0dimensional if and only if C(X) is a mono-source. Take any $x, y \in X$ with $\pi(x) = \pi(y)$. Then f(x) = f(y)for any $f \in C(X)$. thus if X is 0-dimensional x=y. conversely.take any $x, y \in X$ with f(x)=f(y) for any $f \in C(X)$. Then $\pi(x) = \pi(y)$. Since π is one-to-one, x = y; X is 0-dimensional.

A functor $T: \underline{C} \rightarrow \underline{B}$ is faithful hen to every pair X, Y of Ob(C) and to every pair f.g: $X \rightarrow Y$ of mor(C) the equality $T(f)=T(g): T(x) \rightarrow T(Y)$ implies f=g. (mac Lane [3]).

Lemma 3.3. The functor H and C are faithful.

Proof. Let $f.g: Y \to X$ be in <u>2-reg</u> with $H(f) = H(g): H(X) \to H(Y)$. Then $h \cdot f = h \cdot g$ for any $h \in H(X)$. suppose that $f \neq g(x)$ gor some $x \in X$. Since X is 2-regular, there is a $k \in H(X)$ with k(f(x)) = k(g(x)). This contradicts the fact $h \cdot f = h \cdot g$ for any $h \in H(X)$. Hence H is faithful. The case C is similar.

Theorem 3.4. π is a H-universal map.

Proof. Take any $Y \in Ob(\underline{2-reg})$, and let $f: X \to H(Y)$ be in $\underline{0-dim}$. Define $\overline{f}: Y \to C(X)$ by $\overline{f}(y)(x) = f(x)(y)$ kfor any $x \in X$ and $y \in Y$. On the otherhand, the map $p: Y \to C(H(Y))$ defined by

 $P(y)=P_y$ for any $y \in Y$, where $P_y(f)=f(y)$ for any f ϵ H(Y), is well-defined, for every homomorphisms between semigroups with p-topology is continuous.

Now, let $y \in Y$ be fixed and take ay $x \in X$. Then clearly $\overline{f}(y)(x) = f(x)(y) = P_y(f(x)) = (P_y \cdot f)(x)$, and so $\overline{f}(y)^{-1}(i) = (P_y \cdot f)^{-1}(i)$ for any i=0, 1. Thus $\overline{f}(y)$ is continuous on X to 2. And let a, $b \in Y$ and $x \in X$. then $\overline{f}(ab)(x) = f(x)(ab) = f(x)(a)f(x)(b) =$ $[\overline{f}(a)\overline{f}(a)](x)$. thus \overline{f} is a homomorphism. In all, \overline{f} is well-defined. Moreover, for any $x \in X$ and $y \in Y$ $[H(\overline{f}) \cdot \pi](x)(y) = [H(\overline{f})(\pi_x)](y)$

 $=(\pi_{x}\cdot \overline{f})(y)=\overline{f}(y)(x): H(\overline{f})\cdot \pi=f.$

From the above Lemma 3.2, $H(\bar{f})$ is unique. Once again, from the above lemma 3.3, \bar{f} is unique. In all, π is a H-universal map.

Corollary 3.5. Let X $Ob(\underline{2-reg})$ and let $P: X \rightarrow C(H(X))$ be defined by $P(y)=P_y$ for any x $\boldsymbol{\epsilon}$ X, where $P_y(f)=f(x)$ for any f $\boldsymbol{\epsilon}$ H(X). Then P is a C-univeral map.

Remark 3.6. 1) From the above Theorem 3.4 and the above corollary 3.5, we have $H \rightarrow C$ and $C \rightarrow H$.

2) From the fact $H \rightarrow C$ and $C \rightarrow H$, we have: $\pi : H(X) \rightarrow H(C(H(X)) \text{ and } P:C(Y) \rightarrow C(H(C)(Y)))$ are bijective for any $X \in 2\text{-reg}$ and $Y \in 0\text{-dim}$. respectively. Since P is a homomorphism, P is an isomorphism in 2-reg. Moreover, π and π^{-1} are homomorphisms. π is a homeomorphism in 0dim.

Theorem 3.7. For any 0-dimensional topological space X and 2-regular semigroup Y. C(X, H(Y) is topological isomorphic with H((Y), C(X)).

Proof. Define a map $T: C(X, H(Y)) \rightarrow H(Y, C(X))$ by T(f)(y)(x) = f(x) (y) for any $f \in C(X, H(Y))$, $x \in X$ and $y \in Y$. Then T(f) = T(g) implies f(x)(y) = g(x)(y)for any $x \in X$ and $y \in Y$. Then T(f) = T(g) implies f(x)(y) = g(x)(y) for any $x \in Y$, and so f = g. i.e., T is ont-to-one. Again we define another map $G: H(Y, C(X)) \rightarrow C(X, H(Y))$ by G(g)(x)(y) = g(y)(x)for any $g \in H(Y, C(X))$, $x \in X$ and $y \in Y$. Then for any $g \in H(Y, H(X))$, $(T \cdot G)(g)(y)(x) = G(g)(x)(y) =$ g(y)(x); $T \cdot G = 1_{H(Y, C(Y))}$. Similary $G \cdot T +$ $1_{C(X \mid H(T))}$. Hence T is onto. Take f, $g \in C(X, H(Y))$, $x \in X$ and $y \in Y$. then T(fg)(y)(x) = (fg)(x)(y) =f(x)(y)g(x)(y) = [T(f)T(g)](y)(x); T(fg) = T(f)T(g). Thus T is a homomorphism. Thus T is a semigroup isomorphism.

Clearly G is also a homomorphism. By the proposition 2.1, T and G are continuous. Thus C(X, H(Y)) is topological isomorphic with H(Y, C(X)).

Let 1 be the trivial singleton simigroup, then $H(1)=\{0,1\}$ and it has the discrete topology as a p-topology. Moreover, 1 id 2-regular. Hence we have.

Corollary 3.7. For any 0-diminsional space X, C(X) is a compact.

Proof. Clearly C(X) is topological isomorphic with H(1, C(X)). By the similar method of Remark 2.6. H(1, C(X))[C(X)). By the similar method of remark 2.6. H(1, C(X))[C(X)] is closed subspace of a power of 2. Hence C(X) is compact.

Literature Cited

- Bourbaki N. 1966. general Topology, addison-Wesley, London.
- Carruth, J. H. 1984. The theory of topological semigroups. Marcel Dekker,
- Choe T. H. and S. S. Hong, 1984. The duality between lattice-ordered monoids and ordered topological spaces. Semigroup Forum 29. 149-157.
- Gillman. L. and M. feriscn, 1960. rings of continuous Functions, D. Van Nostrad Co, New York

- Herrlich H. and G. E. Strecker, 1973. Category theory. allyn and Bacon, Boston.
- Hong, S. S. 1980. 0-dimensional compact ordered spaces. Kyungpook Math. J. 20.
- Johnstone, Peter T. 1982. Stone spaces, Cambridge University Press, Cambridge.
- Mac Lane, S. 1971. Categories for the Working Mathematician. springer-verlag. New York,

국 문 초 록

0-차원 위상공간과 2-정규 반군과의 관계

이 논문에서는 2-정규 반군을 도입하고 그 위에 p-위상공간을 부여하여 두 functor H. C을 도입하였다. 그리고 π, p는 각각 H. C-universal map임을 보이고, H(Y. C(x))와 C(X. H(y)는 위상적 농형관계에 있음 을 보였다.