The Duality between O—dimensional Spaces and
2—regular Semigroups
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Summary

We introduce 2—regular semigroup and endow p—topology on it, and we have two functor H and C.

We prove that 7 and p are H. C—universal map and H(Y. C(X)) is topological isomorphic C(X. H(Y))

for any Z-regular semigroup X and O-dimensional space Y.

I. Introductin

It 1s well known ([4]) that a compact (realcom-
pact. resp.) space X can be completely determined
by the homomorphisms on the rnng C*(X, R)
(C(X. R). resp.).

In this paper. we will introduce a concept of
2-regular semigroup and show that C(X) is 2—
regular for any topological space. Next, we are
concerned with the analogous problem between

O—dimensional spaces and 2-regular semigroups

1. 2—regular semigroups
In this section, we can introduce the concepts

of prime ideal and 2-regular semigroup which
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will be used throught this thesis.

Definition 1.1. A proper ideal 1 of a semigroup
1s said to be prime if whenever xyel, xe€l or
Yel

Let 2=10.1{ be the two point semigroup such
that xy=x if x=y and xy=0 if x#y forany x.ye
2, then 0! is the unique prime ieal of 2. For any
semigroup X. let's denote P(X) for the set of all
prime ideals of X, ¢ and X Then there is an
one-to-one correspondence between H(X), the set
of all homomorphisms on X into 2. and P(X). Let
T: H(X) -+ P(X) be defined by T(fy=1""(0) for any
fe H(X) and define G: P(X)— H(X) by G(I) the
characteristic function for ¢I. the complement of 1.
for any IeP(X). Then T -G=1px, and G- T=

Iyxy. In the fllowing, we may assume that H(X)=
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P(X). ie. f={1O
semigroup X. Moreover. for any f. ge H(X), fg=
(fg)'(0)=f"'(0)="Ug '(0). Hence ¢ =1, H(x)=1 for
any x € X. is the identity and X=0. 0(x)=0 for

for any feH(X), for any

any x € X. is the zero element of H(X). and any

element except ¢ has no inverse.

Proposition 1.2. Let X be a semigroup and
ICX. then I is an ideal and ¢I is a subsemigroup

of X if and only if I is a prime ideal of X.

Proof. Using the contraposition of the definition

1.1. we have an equivalence statement.

Proposition 1.3. Let X and Y be semigroups.
f-X =Y a homomorphism and let ] be a prime

ideal of Y. then £'(J) is a prime ideal of X.

Proof. Clearly J=g for some ge H(Y). Hence
g - fe H(X) and f'(J)=g - f. Thus {7'(J) is prime.

Definition 1.4, We say that a semigroup X 1s
2—regular if the family H(X) is a SG mono-
source, equivalently, for any xyeX with x#y,
there is a prime ideal I of X such that I contains
either x or vy.

In the following. SG(2-reg) is the category of
semigroups (2-regular semigroups. resp.) and
homomorphisms. In the above definition. the con-
cept that H(X) is a SG mono-source means that
H(X)C% and whenever x#y in X, there 1s a fe€
H(X) with f(x)#f(y), ie. {(x)=1(y) for all {fe H(X)

implies x=y.

Theorem 1.5. Let X be a semigroup and let
(X)) ,e1 be a family of 2—regular semigroups. If
i, X=X, |1 is a homomorphism. iel} is a SG

mono-source, then X is a 2-regular semigroup.

Proof. Take any x.y € X with x=y.Since {f, | i€

It is a SG mono-source, f(x)#f(y) for some jel

Since X, is 2—regular, g(f,(x))#g(f;(x)) for some g
€ H(X)). clearly f-g;e H(X), and hence H(X) 1s a

SG mono-source, ie.. X is 2-regular.

Corollary 1.6. 1) 2—reg is productive and here-
ditary.

2) Let X be a Hausdroff topological space and
2= 0,1} be the two points discrete space and let
C(X) be the set of all continuous function of X
into 2. Let’s define an associative binary opera-
tton on C(X) for any Hausdroff topological space
X using the pointwise multiplication, i.e.. for any
f, ge C(X) and x € X, ({g)(x)={(x)gtx). For any x
€ X, define a map n,: C(X)—2 by nx(I)=f(x)
for any fe C(X). then {7, |xe€X} is a SG mono-
source. Hence for any Hausdroff topology X. C(X)

1s a 2-regular semigroup.

Lemma 1.7. Let X be a semigroup. then the
following are equivalent:

1) X 1s 2-regular.

2) There 1s a SG  mono-source fi: X—=2) e
where 1 1s an index set.

3) X is isomorphic with a subsemigroup of a
power of 2.

4) For any x,y € X with x+#y, there is a prime

ideal I of X such that I contains either x or y.

Lemma 1.8. For any semigroups X. Y, P and
Q, let e:X—Y be an onto homomorphism,
f:X—=P and g:Y—=Q are homomorphisms and
m:P—Q is an one-to-one homomorphism with

g -e=m - {. then there is a unique homomorphism

I:Y—P such that the following diagram
commutes :
X . —y
' /,x“f/ lg
P _ i Q
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Proof. Note that if K(e)=1(x.y)e XXX | e(lx)=
e(y) CK(f)=l(a.b) eX XX | f(a)=1(b){. then there
exists a unique homomorphism f:Y —P with {.e
=f{ by the Indeced Homomorphism Theorem
Hence it suffices to show that K(e)TK(f).

Take any (x,y)e K(e). then e(x)=e(y). and hence
gle(x)). =gle(y) ie. m(f(x)=m({(y)). Since m 1is

ont-to-one. f(x)=1(y): (x.y) € K(f).

Theorem 1.9. 2-reg is epireflective on SG. ie.
for any semigroup, there is an onto homomorph-
ism 1: X —iX such that

1} 1X 1s 2-regular; and

2) for any homomorphism f:X — K, where K is
a 2-regular semigroup. there is a unique homo-

morphism f:iX =K with {.i={

Proof. Let h="H(X): X = 28% be defined by
h(x)=Pr,. where Pr(fi={(x) for any fe H(X), then
h is a homomorphism.

Let iX be the subsemigroup of 2H*' whose
underlying set is h(X) and let i be the correstric-
tion of h by h(X). Then clearly i is an onto
homomorphism. Since 2-regular semigroup is pro-
ductive and hereditary. and 2 is 2—regular. iX is a
2—regular semigroup. Now. take any homomouph-
ism f:X—K such that K is a 2-regular semi-
group, and hence there is a one-to-one homo-
morphism m:K—2' for some index set l. by
Lemma 14. For sach 1€l Pr,-m-feH(X) and
let u,=Pr,-m-{ then Pr,-h=u, Consider a

commute diagram:

>

; Y
.-._.__-><':r

™~

=

%

o]
=]
o €

where j is the inclusion map on iX to 24*X and g
=MNPuy,: 240 42! is the map with P, - g=Puy,
for all iel. Since (P);; is a SG mono-source
and esch Pu; is a homomorphism, g is a homo-
morphism. Thus P;.g-j-i= Puy-j - 1=P,-
m-f for all iel, and so g-j-i=m-{. for

(p.)| el

1.8, there is a unique homomorphism f:iX —-K

is a mono-source. By the above Lemma
with T-i=f This completes the proof.

Definition 1.10. For any semigroup X. i: X —=i1X
or iX is called the 2—regular reflection of X.

If X is a 2-regular semigroup then i is an
isomorhism, i.e., we consider x=i1X=
P, H(X)—2: xeX!. Now. define a functor i:
SG — 2—reg as the follow: for any semigroup X.
Y and Z and any homomorphisms f: X - Y. and
g:Y —Z. define f': iX—iY by {'(P)=P, for any
x e X. Then for any x. YeX. {P.Po=f(P )=
Pienr= Proe= PP =P (P, 1x(P)=P,.
and (€ - D(PI=Py . d=Pauxn=8"(Pux)=g'(f'
(P = (g'"(P,). Moreover. we have

Theorem 1. 11. The functor i:SG —2—reg is a
full functor, i.e., when to every semigroups X and
Y and to any homomorphism g:iX —1Y. there is

homomorhism f: X —Y with g=f"

Proof. Since g is a homomorphism, for any x €X
there is unique y,€Y with g(P,)=P,. Define
f:X—Y by f(x)=y,. then for any abe X, g(P,)=
g(P, Py)= g(P.)g(Py)=P, P, =1(a)(b): and

hence f is a homomorphism. Moreover, for any x

€ X. f(P)=Py,=Py,=gP,): f=g.

2. Constructing a p—topology on semi-
groups

Let’s endow topology on a semigroup X using
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its prime tedals. Let & =1J.] or ¢J is a prime
iedal of X}, and let

£=1| & ; & is a finite subfamily of &}. Then
X e€£ and £ is closed under finite intersectin and
& C%£. and hence £ is a base for a topology on X.
Let o be the Topology on X generated by it.once
again, we will simply denote(X. ¢) by X and we
will say (X, ¢) is the p—topology on a semigroup
X with its prime ideal. In particular the two point
semigroup 2 has a discrete space with its p—

tokpology.

Proposition. 2.1. For any semigroup X and Y
with p—topology. every homorphisms on X to Y 1s

continuous.

Proof. It follows immediately from the proposi-
tion 1.3.

Theorem. 2.2. For any semigroup X with p—
topology H(X) is an initial source, and if for any
topological semigroup, X, H(X) is initial in

Top the given topolpgy on X coincides with the
p—topology.

Proof. By the above proposition 2.1, every ele-
ment of H(X) is continuous. Moreover., for any
prime ideal J of X there exists a homomorphism g
on X to 2 with J=g !(0). let Y be a space and
let h: Y =X be a map such that{ - his continuous
for any fe H(X). Hence for any prime ideal ] of
X, h"%J)=(g - B)"'(0) is clopen in Y. and so h is
continuous. Thus H(X) is initial. Let X" be the
space on a semigroup X with p-topology. Then
H(X") is initial. Hence [=ly: X—X’

tinuous.

is con-

Theorem 2.3. Every binary operation on a semi-

group with p—topology is continuous.

Proof. We have a commute diagram:

my
XxX — X
{
fx ¢
my
2% 2 52

for any feH(X). where myx, m; are the binary
operation on X and 2, respectively. By the above

Theorem 2.2. H(X) is initial, my is continuous.

Proposition. 2.4. Every 2-regular semigroup X

with p—topology 1s Hausdroff and vice versa.

Proof. Take any x.ve X with x£y. Then there
is a € H(X) with f(x)=1f(y). We may assume f(x)=
1 and f(y)=0. Then {7'(0) and {~Y(1) are disjoint
open neigrhborhoods of x and y. resp.

Take any x.y € X with x=y. Then there exist
open neighborhood U and V of x and vy, resp.
Hence there is a [ € £ with x €1 but yel. We may
assume | is a prime ideal of X. Hence 1=17'0) for
some fe H(X). and hence f(x)={(y). Thus X is

2-regular.

Corollary 2.5. 1) Every 2—regular semigroup X
with p—topology is a topological semigroup.

2) Take any prime ieal I of X and x.v € X with
xy € ¢]. then there are basic open neighborhood U
and V of x and y. resp. with UV ¢l

Remark 2.6. 1) Every 2—regular semigroup X
with p—topology 1s O-—dimensional. 1e., its space
1s Hausdroff and it has a base consisting of
clopen subsets of X.

2} For any semigroup X. H(X) with p—topology

1s O—dimensional compact semigroup.
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Proof.

structing. By 2.2.

1) follow immediately frome the con-
H(H(X)) 1s an initial mono-
source in Top. and hence we can consider H(X)
as a subspace.subsemigroup with p—topology. of a
power of 2.
Moreover, H(X)= NK(x.y). where K(xy)= {=2%;
fxy)=1(x)f(y): . 1s Hausdroff. K(x.y) 1s
closed and hence H(X) is closed. Hence H(X) is

a O-dimensional compat semigroup.

ie.. a O-dimensional semigroup.

Since 2

3. Adjoint functor

To each category C we also associate the oppo-
site category C“?. The objects of C" are the
objects of C. the arrows of C'"" are arrows {™ in
one-to-one correspondence {— (P with the
arows of C. For each arrow f:—bof C. {":
b~ a(the direction is reversed) The composite [7-g*
=(gh)"? is defined in C"® exactly with the compo-
site of defined in C. Let’s denote o—dim for the
category of all O—dimensional spaces and all con-
tinuous maps.

From the section 1, 2. we have two functor

1) H:2-reg’? —0—dim defined by H(f): H(X)
— H(Y) for arrows {:X—=Y in 2-reg™,
where H(f}{g)=g - {’? for any ge H(X). and

2) C: 0-dim —2—-reg"® defined by
C(f): C(X) = C(Y) for any arrows {: X =Y in 0-
dim. where C(f)(g)=g « {"". for any ge H(X). The

any

following definition is due to H. Herrilich [2].

Definition 3.1. Let G:f¥—3 be a functor and
let BeOb(fy). a pair (u. A) with Ae Obig) and
u:B— G(A) is called a universal map for B with
respect to G(or a G—universal map for B) if for
each A’=0b(#) and each {: B — G(A’) there exists
a uniqu gh—morphism fA —g(A’} such that the

triangle

P

B » G(A") A
. .

f e [

' .

G(A") A

commutes.

Lemma 3.2. Let X be a topological space and
let m be defined by m(x)=n, for any xeX.
Then X 1is O-—dimensional if and only if = is

one-to-one.

Proof. Clearly a topological space X is 0-
dimensional if and only if C(X)} 1s a mono-source.
Take any x.y € Xwith x(x)= 7 (y). Then {(x)={(v)
for any fe C(X). thus if X is O—dimensional x=y.
conversely.take any x.y € X with f(x)={(y)for any fe
C(X). Then m(x)=m(y). Since 7 1s one-to-one., X
=y: X is O-dimensional.

A functor T:C — B is faithful hen to every pair
X. Y of Obt() and to every pair fg:X—Y of
mor(C) the equality T()=T(g): T(x)— T(Y) m-

plies f=g. (mac Lane (3]).
Lemma 3.3. The functor H and C are faithful.

Proof. Let fg:Y—X be in 2—reg with H(f)=
H(g): H(X)—= H(Y). Then h-f{=h-g for any he
H(X). suppose that f#g(x) gor some x € X. Since
X is 2-regular, there 1s a k € H(X) with k(f(x))=
k(g(x)). This contradicts the fact h:{=h-g for
anv he H(X). Hence H is faithful. The case C is
similar

Theorem 3.4. m is a H-universal map.

Proot. Take any \'eOb(':):ﬂ). and let

fy)x)=1(x)(y) kfor any xeX and yveY. On the
otherhand. the map p:Y— C(H(Y)) defined by
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P(y)=P, for any y e Y. where P (D=f(y) for any {
€ H(Y). 1s well-defined. for every homomorphisms
between semigroups with p—topology is con-
tinuous.

Now, let y € Y be fixed and take ay x € X. Then
clearly Ky} x)=f(x)(y)=P,({(x))=(P, - )(x), and
5o f(y)"(i)z(P),-f)‘l(i) for any 1=0. 1. Thus
f(y) is continuous on X to 2. And let a, beY
and x € X. then f(ab)(x)=f(x)(ab)=f(x)a){(x)}(b)=
[fa)(a)](x). thus T is a homomorphism. In all. { is
well-defined. Moreover. for any xeX and yeY
[H(D - 7 J(x)y) = [H{E = )](y)

=(7. - Ny)=ky)x) . HD - = =1
From the above Lemma 3.2, H(f) is unique. Once
again. from the above lemma 3.3. T is unique. In

all. 7 is a H—universal map.

Corollary 3.5. Let X Ob(2-reg) and let
P: X~ C(H(X)) be defined by P(y)=P, for any x
e X, where P (f)=f(x) for any {e H(X). Then P 1s

a C—univeral map.

Remark 3.6. 1) From the ahbove Theorem 3.4
and the ahove corollary 3.5, we have H— C
andC—+ H.

2) From the fact H=4 C and C = H, we have:
7 H(X)—= H(C(H(X)) and P :C(Y)— C(H(CXY))
are bijective for any Xe2-reg and Y eO-dim.
respectively. Since P is a homomorphism, PTan
isomorphism in 2-reg. Moreover, 7 and 7! are
homomorphisms. x is a homeomorphism in 0-

dim.

Theorem 3.7. For any O-dimensional topologic-

al space X and 2-regular semigroup Y. C(X.

H(Y)) is topological isomorphic with
C(X).

H(Y).

Proof. Define a map T:C(X, H(Y))— H(Y. C(X))
by T(fMy)(x)=f(x)(y) for any fe C(X. H(Y)). x € X
and yeY. Then T(f)=T(g) implies f(x)y)=g(x)(y)
for any xeX and yeY. Then T(f)=T(g) implies
f(x)Xy)=g(x)y) for any x€Y, and so f=g. ie, T
1s ont-to-one. Again we define another map
G:H(Y. C(X)— C(X. HY)) by G@)x)(y)=g(y)x)
for any ge H(Y. C(X)). xe¢ X and yeY. Then for
any geH(Y, H(X). (T - Gegy)x)=G(g)x)y)=
glydx): T-G=1lnv.c(yy Similary G- T+
leox uery. Hence T is onto. Take f, g € C(X, H(Y)).
xeX and yeY. then T{fg)y)x)=(g)x)y)=
{()gx)(y)=[TOT@1(y)Nx): Tilg)= T(OT(g).
Thus T is a homomorphism. Thus T is a semi-
group 1somorphism.

Clearly G is also a homomorphism. By the
proposition 2.1, T and G are ccntinuous. Thus
C(X. H(Y)) is topological isomorphic with H(Y,
C(X)).

Let 1 be the trivial singleton simigroup, then
H(1)={0.1} and it has the discrete topclogy as a
p—topology. Moreover. 1 id 2-regular. Hence we

have.

Corollary 3.7. For any O-diminsional space X,

C(X) 1s a compact.

Proof. Clearly C(X) is topological isomorphic
with H(1, C(X)). By the similar method of Remark
26. H(l. C(XP[C(X). By the similar method of
remark 2.6, H(l. CXNICX)] is closed subspace

of a power of 2. Hence C(X) is compact,
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