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Summary

On the basis of the Kubo formalism for linear response, a theory of magneto-optical transitions
in the electron-impurity system is presented for the Faraday configuration. The frequency-dependent
conductivity of the system is evaluated by using the Mori-type projection technique. In the parabolic
band model, the general lineshape functions which are applicable to both a weak and an arbitrary
and,/or strong electron-impurity coupling are introduced in two different ways. Explicit expressions
for direct interband and intraband transition are given as functions of temperature, magnetic field,

impurity concentration, and the incident photon frequency. The results are compared with those of

some other authors,

netic field strength and impurity concentra-

1. Introduction tion were the object of study since their prop-

erties are very sensitive to the type of scatter-

Magneto-optical transitions have been ex- ing mechanisms affecting the behavior of carri-
rensively studied as a powerful tool for investi- ers as well as the band structure of solids. The
gating transport behavior of electrons in semi- absorption lineshapes in semiconductors are
conductors. Especially, the shape of the line, typically broadened by the scattering mecha-
the linewidth and shift of absorption peaks. nisms including electron—electron and electron-
and their dependence on temperature, mag- background (impurity and phonon) interac-
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tions. But if the number density of electrons
is very low as in semiconductors, the electron-
electron interaction may be neglected. Then,
among the kinds of interactions available, the
background scatterings may be dealt with as

perturbation.
In the presence of a constant magnetic

field, the noninteracting electrons perform undis-

turbed cyclotron motion. The electron energy
is made up of the kinetic energy of the original
motion in the field direction. together with the
quantized energy of the oscillatory motion in
the plane perpendicular to the field direction.
This results in the Landau splittings in both

conduction and valence bands in solids.
In the process of absorption of photons the

electrons change their energies and momenta
to make optical transitions to higher sublevels.
Usually we deal with two kinds of transitions.
The first is intraband transitions including di-
rect and indirect cyclotron transitions. The
second is interband transitions including di-

rect and indirect transitions(Madelung,1978).
Many theoretical{Argyres and Sige!,1974,

Ciobanu and Bany»i.1968, Choi and Chung,1983.

1984, Kawabata 1967, Lodder and Fujita.1968.
Prasad 1982, Ryu and choi.1984, 1985. Roven
et al. 1984, Shin et al. 1973, Suzuki and
Dunn.1982. 1988, and Yi et al. 1987) as well
as experimental studies{McCombe et al. 1876,
Matsuda and Otsuka,1979. and Kobori et al.
1990) on these topics have appeared. But most
of the work on the lineshape studies has been
focused on intraband transitions, especially on
cyclotron resonance lineshape and the effect

of scattering associated with interband transi-

tions has been paid less attention(Lynch.1985).

It should be noted that the agreement between
the experimental and theoretical resuits is not
satisfactorv(Royen et al. 1984 and Kobori et
al. 1990) and that many theoretical investiga-
tions(Royen et al. 1984) based on the Kubo
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formalism(Kubo,1957) have produced a bewil-
dering variety of results. Thus the situation on
the quantum limit cyclotron transition still re-

mains unclear.
The basic problem of discrepancy among

these theories based on the Kubo for malism
may be traced back to the ways of expand-
ing the perturbative terms of the electron-
background interactions. Considering many
different methods(Prasad 1982 and Suzuki and
Dunn,1952, 19088) presented so far, we see that
the lineshape functions of the magneto-optical
transitions are classified into two categories in
general. The first of these is the case of a weak
electron-background coupling, which is given
in the closed form representation. The second
is the case of an arbitrary and/or strong one,

which is given in the iterative manner.

In the limit of weak electron-phonon cou-
pling the present authors(Ryu and Choi.1984,
1985 and Yi et al. 1087) obtaiued the line-
shape function given in the closed form repre-
sentation, and showed that Kawabata’s method
(Kawabata 1967) and Argyres and Sigel’s tech-
nique{Argyres and Sigel,1974) gave the same
results in the theory of both the intraband(Ryu
and Choi.1984) and the interband(Yi et al.
1957) inagneto-optical transitions. The au-
thors also suggested that there exist two weak
coupling schemes in terms of the calculation
with respect to the electron states and the

phonon averaging.
The purpose of the present work is to present

general quantum theories of magneto-optical
absorption lineshape which are applicable to
both a weak electron-impurity interaction and
an arbitrary and/or strong one. The origin
of this formalism dates back to the discovery
of the theory of nonlinear static conductivity
by the present authors(Ryu and Choi.1991).
Here we apply the theory to the case in which
the single—electron states are expressed in terms
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of Bloch states. In the formulation, we shall
adopt a parabolic band model. Both direct in-
terband transition for direct gap materials and
intraband transition shall be considered as an
example. We assume that the effective mass of
the carriers is isotropic in the vicinity of the
hand extrema k — 0, and neglect the band
degeneracy as well as the effects due to spin
and spin-orbit cecupling. Based on the model.
we will derive the general formulas for line-
shape associated with magneto-optical transi-
tions by using the Mori-type projection oper-
ator technique and apply them to the spectral
region in which the two types of transitions

are observed.
The present paper is organized as follows:

In Sec.2, we will describe the model of the
svstem. The frequency-dependent conductiv-
ity in the parabolic band model is evaluated
in Sec.3. The conductivity is closely related
to the lineshape function due to the collision
process. In Sec.4, the general lineshape func-
tion is obtained in the band model by utiliz-
ing the Mori-type projection operator method
presented by present authors(Ryu and Choi,

1991). In Sec.5, we will calculate the functions
for both transitions. The general expressions

of the lineshift and linewidth for a weak cou-
pling and an arbitrary and/or strong one are
given in buth transition cases as functivus of
the temperature, magnetic field, impurity con-
centration. and the incident photon frequency.
Comparison with some other theories shall be

made in the last section.

2. Description of the system

Cuonsider a system of N, electrons in in-
teraction with the impuritys, initially in equi-
librium with a temperature 7. Then, in the
presence of a static magnetic field B. the time-
independent Hamiltonian H of the system can

be written(Suzuki et al. 1988) as

H=H+H.s 1)

B +Bp=VV <o, [(h+h )2 >al 0, 2.2)
v

b= [F+ ed(A)/2m], (2.3)

b, = S EPerpliq N, (2.4

where ; @, > means the electron state in the
¢-band: o denotes the Landau state (N.k).
N(= 0.1,2,--:) and ¢ are Landau level index
and the band index, respectively. o} (da,)
is the creation (annihilation) operator for an
electron with momentum g, effective mass m;
and energy £ in Landau state o within the s-
band. 7 is the position vector of the electron.
A(F) is the vector potential which gives rise to
the static magnetic field B(= V x A). v(§)
means the Fourier transform of the impurity
potential, It is well-known that when a static
magnetic field is applied along the z-direction
of an isotropic semiconductor, characterized
by the vector potential A(F) = (0,Bx,0), the
Hamiltonian of the unperturbed single-electron

is given by

b, =[ph 4 (p, + miw.z)! + p¥|/2m, (2.5)

where w. = ¢eB/m? is the cyclotron frequency
in the ¢-band. The eigenvalues ES of the un-
perturbed single-electron Hamiltonian k, and
the single-electron state | &, > in the #-band

are. respectively, given by

E2 = (N + 1/2)Aw, + ¢,(k,). (2.6)
(k) = Nk [2m), 2.7
| a, >=| N,E,0 >=| Nk, k,, ¢ >=| US(AF2(7) >, (2.8)

where U/$(7) is the Bloch function for the o
band at k = 0 and the envelope function F2(#)
is given by
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FUA = (LyL.) ou(x +Aky/Blezplik-7),  (29)

$ule) = (2VNW/ar) P By (xfro)exp(~ 2" [21]). (2.10)

Here L, and L, are the y- and z-directional
normalization lengths, Hy is the Nth Hermite
polynomial, and rg = (k/eB)!/2. For band ¢
the function F*'(F) will have the same form
given by Eqs.(2.9) and (2.10) where k and N
are replaced by K and N', respectively. It
should be noted that the cell periodic part of
the Bloch function is assumed to be indepen-
dent of electron wavevector £ and the mag-
netic field. The envelope function F2(r) is
slowly varying while the Bloch function U§(r)
is rapidly varying. Therefore it is noted that

the U3 (F)’s are normalized in the unit cell whereas

the FI(F)’s over the whole crystal:

[ v vt = b, (2114

S P OROEC £ bos = bl — k)olk, — k), (2110)

where C is the volume of the unit cell and
Q(= L.L,L,) is that of the crystal in real
space.

In the parabolic band model, the single-

electron energy in the Landau state o in the

conduction and the valence bands. respectively,

are given by

B = Bylk) = (N + 1/2)ha, + e (k) + B, (2.120)
El= EVK) = —(N'+ 1/, — o (K). {2.128)
where w. = eB/m? and w, = eB/m?. The

subscripts ¢ and v indicate the conduction and
valence bands, respectively. We see from Eqgs.
(2.12a) and (2.12b) that in the presence of
the magnetic field, the conduction and valence
bands separated at k = 0 by the direct-band-
gap £, are further split into Landau subbands
specified by the Landau level indices N(N') =
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0,1.2,-, in which the energies of the single-
electron in the conduction and the valence bands
are quantized in the x-y plane and quasi-conti
nuous in the z-direction. The minimum of the
lowest subband of the conduction band occurs
at the energy }hw. above the energy band
minimum in zere feld, and the maximum of
the highest subband in the valence band oc-
curs at the energy lhw, below the valence
band maximum in zero held. thus increasing
the band gap by jA{w. + w,). The changes
in the energy leveis due to the application of
magnetic field and the transport properties of
electrons in a solid can therefore be studied
through the resulting alteration of its optical
properties.

3. Theory of magneto-optical
transition

When a circularly polarized electromag-
netic wave of amplitude £ and frequency w
given by

E, = Ecomut. E, = Exinut. E. =0 {3.1)

is applied along the z-axis in the semicon-
ductor, the absorption power delivered to the
system is given for the Faraday configuration
(E L B) as(Kawabata 1967)

P = (EY2\Rela, {(a)], (3.2)

where Re means "the real part of”, @ = w -
184 — 0)and .

conductivity. Each elements of gg(w) (k! —

{@) is the complex optical

z.y.2z) is given in the Kubo formalism and

G4 —{w) cau be expressed as(Ryu et al. 1591)

" (2)
~ Ed
=a! /° @ ¢.tp(—i-.':t)/; 43, <Trlpd " 1—=ih3\ [ BN (¢ | H)) >y
{3.3a)

a ) A
= w207 ¥ dieapt~iat) < Tripu (V0] )] >y, (338)
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where 4 = (kpT)™! for the temperature T,
< ++- >imp denotes the average over the im-
purity distribution, T'r means the many-body
trace, J£ = J, + (J, are the transverse com-
pouents of the total current operator in the
many-bady formalism, J(t | H) is the time-
dependent total current operator in the Heisen-
berg representation, and

_ __csplA(eN, - B.)) 341

P = Trlezpldic N, - B}

Here ¢ is the chemical potential, N,=Y", 43 @a,

and Tr® denotes the many—electron trace
To obtain Eq.(3.3b) we have used the fol-

lowing identity (Fujita 1968)

’ P . a -
L 4o Ti-irs | B = lim, - p (i), @.5)

where H = H, - i - J, i being a c-number
vector, is the modified Hamiltonian. It should
be noted that the total current operator can be
written in terms of the single—electron current

operator j as

1=V <caljlre>ea, (3.6}
. 3,

Here j is the velocity operator multiplied by
the electronic charge —e.
Then. the frequency-dependent conductivity

formula. Eq.(3.3b). can be expressed in terms
of the single -electron trace as {(Ryu et al. 1964}

e._(w)
=0 ./;‘a expl—iat) < :4_@;%1,"“ Phe+8)] Simpr (3.7)

where h,_.; is the scattering potential in the
single-electron representation, and f is the
modified Fermi-Dirac operator given by

S =lep(B +3 F-)}+17" (3.8)

In order to rewrite Eq.(3.7) in more con-
venient form, we rewrite the interaction term
in the background average as

af ..
e tm 2Ly ey h 4 b

=% -‘_,fa/(.|<a.|k.,'-k,|,\,>
.3:, 2z Je

PR VIPMTAT I Y NN P (3.9

where we have used

) e
_lyg.a;ﬂ—h.—rll =R R, {3.10)

with R, = (z - h.)~! and f(z) is defined by
Ha)=leap{dz -} + 1] * {3.11)

Then, by considering Eqs.(3.7) and (3.9)
the frequency-dependent conducti vity is re-
duced to

0. 12) =07 X <<a, | Y, [ Ay >< Ay [ (2] [ @y >3 mp

- 3.12)
where ;’*(C-) is the Fourier-Laplace transform
(FLT) of j¥(t | A7) defined by

7Tl = FLT (L el = j'"a exp(—iatl;* (¢ [hr)  (3.13)
with Ay = h, + h._; and

IE)) - I(EY)
AT L)

<a,|Y.{as >= BY " E:
A T e

<a.lj [Ae>. (3.14)

where f(E%) denotes the Fermi-Dirac dist ri-
bution fur single-electrons in the s-band and
the electron energy E3. Then. the frequency-
dependent conductivity formula can be rewrit-
ten from Eqs.(3.12) and (3.14) as

s~ JE) - B
= v v LE) - HE])
Y aTEE

X << A¢ | 7H(2) | @0 >>1mps (3.15)

o (@) <o |y A >

e

where <o, | /7 { N\pe >= <A1 5% 0, 51"
For intraband cyclotron transition and inter-
band transition, the selection rules are given
by (Burstein et al.,1959)

(< Az |5* | e >)inera

= LU [ A Fane

S (T ALY W

=<o+ 1|5t o> 60 =50 0000 (3.16)
(< Ae )57 | @ >)inter

= [ U Arvine: [ AR AL

= [ U3 Ui

=<U{ (N7 103D > 8es = 0 baa- (3.17)
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To evaluate < j¥,,0(@) >imp of Eq.(3.15)
for the intraband transition, many techniques
were presented, such as the double time Green’s-
function approach (Ciobanu et al. 1963), Kawa-
bata's projection operator method (Kawabata,190
67), the proper connected daigram method (Lo
d-der et al.1968), Nakajima projection opera-
tor method (Shin et al. 1973), Argyres—Sigel’s
projection operator method (Argyres,1974), the
coherent potential approximation method (Pra
sad 1982}, and the resolvent—superoperator ap-
proach (Suzuki et al. 1982, 1088) Note that
many methods (Choi et al. 1084, Yi et al.
1087, and Suzuki 1988). were introduced for
the interband tramsition. The central prob-
lem of evaluation of Eq.(3.15) is the evaluation
of the configuration over the impurity fields.
The main task is to give a suitable expansion
method for the operators << A, | @) |
@, >>imp in Eq.(3.15), which will be outlined

in the next section.

4. Lineshape function

In order to obtain the lineshape function
we will present two representations using the
Mori-type projection operator technique {Ryu
et al. 1991) a closed-form representation and
a continued-fraction form representation.

A. The closed form

For the calculation of << X,/ | j¥(@) |
a, >>imp 0 Eq(3.18), we detine the projec-
tion operators P, and Py for both the single-
electron states | @, > and | A, > and the
impurity averaging as

RX = (Xyfsili"s ()]
Po=1-Ph, (4.2)

where X;; =<< Ar | X | @y >>im,p for any
operator X.
Following Mori (Mori 1965), we separate
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§+(t | hy) into the projective and vertical
components with respect to the ;¥ -axis as
T br)
= Poy ™t | br)+ Fis* (¢ | br)
= Zugit |An)i* + [ Bt |ADAE - 0 Lbr) 43)

where
Zegels | br) m 58 | br)/37, «9
1i{e | by) = esp(GLit/M), s
fimilyg* /A, (.9)
L= Filr, “n
Lyul,+Las. (4.8)

Here L, and Lg are the Liouville operators
corresponding to the single—electron Hamilto-
nian h,.and the scattering potential A,_;, re-
spectively. ) )

In order to obtain j};(@) or Zosi(@). we
differentiate Eq.(4.4) as

S2weibn)
= inpiBet | br) + [ dbant =t | ) Santts L e, (a90)

= iuanaglt | br) + [[ @Bt =t 1 br)BanZantts | br). (49)

Here
voge E Ly M)y 15]. = (By - EN, (410
Qosilt | hr) & Lrpilt | Rr)figi = Zugilt | hr)Bagi, wn)
Nl he) =iLe fi(8 | Mr)/N, (4.12)
Zyilt L hr) = fite | be)/ o (4.13)
Aopi = il ihe i)

where we have used < (h.g)rs—(Reglii > Smp
=0 in Eq.(4.10).
Then, the FLT of Eqs.(4.093) and (4.9b)
leads to

2,,.00) = 5}:(0)/5}, = lia - vwgpi + Eagi(@) 7" (4.15)
Here Tg 7i(@), often called the lineshape func-

tion due to the electron-impurity interaction,
is defined as
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(4.16a)
(4.168)

’ii/.(i’)
=212}y,

Lopil@)

where Ao,.-(w) and Zl,e.-(w,\ are the Fourier-
Laplace transform of Eqs.(4.11) and (4.13), re-

spectively. Considering Eqs.(4.5)-14.8). (4.11),

(4.12) and (4.16a), and taking into account the
relation PyL,GoPyX = (L GoPyX)s.= 0
we obtain

Toil@) = ik} P L UL G P Lr ity 1417)
N=1

where Go = (Ao — L,)"" and we have used
the relation (A-B)™' = A7' 3% _(BA~h)™
for any operators A and B. Now the lineshape
function ,‘_:,‘0,,-(6;). has been expanded with re-
spect to Lpg corresponding to the scatvering
potential. Eq.(4.17) is the general formula for
lineshape given in a clused expansion form for
electron-impurity systems, which is applicable
to the weak coupling case since we have taken
the relation (A-B)™!' = A"} 0 _(BA~)™
Eq.(4.17) is identical with the resuit (Argyres
et al. 1974 and Choi et al. 1983) obtained by
Argyres-Sigel’s projection operator method.
In Eq.(4.17), Argyres et 21.(1974) and Choi
et al.(1983) replaced Lt by Lg under the as-
sumption that PRL,X = 0 for any operator
X. It should be noted that the condition is
not always satisfied. In the case of the in-
traband transition the lineshape function ob-
tained to the second order scattering strength
gives same results whether the condition is
used or not. The results obtained by Choi
et al.(1984) and Suzuki(1988) for a weak cou-
pling to the second order scattering strength
in the interband transition are different from
those of the present authors. The detailed de-

scription will be given in Sec. 5.

B. The continued—fraction form

In order to obtain Z”,-(Cr) of Eq.(4.16b)
we define the projection operators P and Pl'
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P X = (Xp/hipdhss (4.18)

P,=1-P,. (419)

By utilizing these operators we separate f(t |
hr) of Eq.(4.12) into the projective and ver-
tical components with respect to the f,-axis

as
Silt ] br)
=Pufilt | hr) + Pt | br)
= Zult e+ [ Zute IMGE -t [Ard, (420)
where
Al | Ar) = expliLut/Nf;, “21)
fi =il fu/h (4.22)
Ly = PiLeP (4.23)

In order to obtain Z, 7i(@), we differenti.
ate Eq.(4.13) as

d
i"zlll‘l i hr)

issZopft | b+ [ &iBunle =t | br)Zusdts [Ar) (4.2¢a)

¢
=.'..,.,.z.,.(:|AT|+/. & Zay (8 -ty | Ar)AasiZogi(ta [ Ar),  (4.248)

where

= LePefi/N) il T (4.25)
Bylt VAr) = foi(0 | Ar)/ foge = Zagi(t | Br)Bgg. (4.28)
Dt hr) = sLrPfi(t] br)/s, (4.27)
Zyyi(8 | hr) = fapi() o (4.28)
A ® fipf fgi- (429)

Then the FLT of Eq.(4.24) leads to
i) = fuloM i = B0 —iwg + Egta) ™ (430)

Here 53.,;(:3) is the first~order term in the

continued—fraction forms given by

(4.31¢)
(4.318)

‘—-\Iln'(a’
~2,,(@)a44-

Eipl2)

We now see that A, 7;(@), the FLT of Eq.(4.26).
is given in a closed—form expansion while Zg,.—(u‘: ),
the FLT of Eq.(4.28). can be given in a continued-
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fraction manner via the successive projection
operators onto the fo, f3, f¢ - - axes as fol-

lows. In order to obtain the general form for

ZJ-,,-(G-) we define the projection operators P;
and P; onto the f; axis as
P X = (X1i/ §is) f5 (432)
Pl=1-P,. (4.33)
Thus we have
5} Ar)
= LU f(t | he)/h
= B[, | hr) + Pifilt | hr}
= Zat g+ [ Zud LbrIfte - 0 bdi, (034)
where the notation ﬂ{;:oP,'nmeans PP PP
and
Z,5(t L hr) = ot [ AT}/ S, (4.35)
£ s} = expleL, ot /A, (4.36)
L Eil,afifh, (4.37)
Ly = LGP (¢38)

Then the time derivative of Ziri(t ] hr)
leads to

d
‘—’Z,/.(' | Ar)
14
= i Zipdt Lhe) + [ @800t - 6 Rr) 2ty | Ar) {4.39%)

=i Zgit he) + [ 42,000 0 | Ar)yp ity br), (4399)

where

@y pi = | Lr TGP fi/Aigif figen (4.40)
Ayt [ Ar) = fiani(€ ) Me) fizi = 2,0t | Ar) By, (441)
Ll | Ag) =S LeMELFPL L Gt L Ar )/, (4.42)
A = il hyie (443)

The FLT of Eq.(4.39) leads to
2,00} = Jule = e - v = kel ! (4.44a)
= fe—ien - Zgde@)d,n] 0SS0} (4.448)

where A;7:(@) and Z;;1/:(@) are the FLT of
A"!.‘(t | Ar) and Z,-H,,-(t | hr), respectively.
Now Eq.(4.44a) is given in a closed—form ex-
pansion in the j-th continued-fraction repre-
sentation. By considering Eqs.(4.15), (4.16b),

(4.30), (4.31b) and (4.44b), we obtain the gen-
eral lineshape function given in a continued-
fraction form:

Zepls)
. ) L

w = dwyy + Sy
- =dog

L. A

b = fwyg, — e e 3 —_—

b gy = o - e 3 -
iw = dwgy = - L
1 —dwgy, ~ . (4.45)

where Aggi, Aygi, -+ and wygi, way. -+~ can
Le easily obtained from Eqs.(4.40) and (4.43).
Note that i“,u,-(w) of Eq(4.45) is given in two
forms expressed by the infinite closed-form ex-
pansion of the finite continued fraction order
and the infinite continued fraction representa-
tion, and that any approximation is not taken
to derive Eq(4.45). We see that Eq.(4.45) is
applicable Lo the strong coupling case.
Considering Eqs.(3.15), (4.10) and (4.15)
we can express the frequency-dependent mag-
netooptical conductivity tensor as

b~ JNE() - [IE)
E,-E,
. laji I?
Ao — Ef + Ei— < ihEgp(e) >p

o, (@) =

(4.48)

It should be noted that the | ¢ > (=] a, >)
and the E;(= E?) are, respectively, the single-
electron states and the eigenvalues of h,. The
lineshape function, ihf‘.o,.-(w), results in the
lifetime broadening, which is responsible for
the spectral broadening of lineshape. There-
fore, the real and imaginary parts of |'h)-30,,-(6')
defined by

iRSop (&) = ACp () + iATopi(w) (447)

are, respectively, the lineshift and linewidth
for the transition arising from the resonant
absorption of a single photon of frequency w
between single-electron states | ¢ > and | [ >.
Real and imaginary parts of Eq(4.47) are of
basic interest and are related to the quanti-
ties measured experimentally. The real part
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provides the resonance shifting. The imagi-
nary part gives directly the average value of
the relaxation time, the inverse of which then
measures the resonance broadening of the ab-
It should be noted that
both of these quantities are functions of tem-

sorption spectrum.

perature, the magnetic field, impurity concen-

tration, and the incident photon frequency.
For the one-band model, especially for the

conduction band only, the selection rule is given
by J¥ 0. = Jdi 1adere8r.a+1 in Eq.(8.16). Con-
sidering the transitions within this single band,
Eq.(4.46) is given for the intraband magneto-

optical absorption as

.0} = ‘?:_S I(E-el)_f(E-'

E,..-E,

X i on 5o !

Adeviel _ (448)
Eoit + E, —iRT0q 4 10(@)

where ES = E, is given by Eq.(2.6).

For the two-band model, the selection rule
= J¥a.6r0 in Eq.(3.17).
Therefore Eq.(4.46) 1s given for the direct in-

terbaud magueto-optical absorption as

is given by j}

o, (@)

x (4.49)

Ao — E; + ES — ihEqn (@)

where EY, and E'} are given by Eqs.(2.12a) and
(2.12h), respectively. As seen from this. the
onset. of strong absorption due to the existence
of the complex lineshape is shifted from the
energy ho = K2k /2u + B, + h < k. | Vglw)!
ko, > in the absence of the magnetic field. to

A E, - EI 4+ 0%, 0. 0)

b + K20+ E, + 8T, o)

(4.50)

when the magnetic field is applied to the sys-
tem. Here w; and p are, respectively, given
by

S EAN + U2 4+ =) =N + 1/2)eB/p. (4.51)

plEol ! M

+m? (4.52)

It is possible to determine the reduced mass u,

the band gap E,, the energy shift h\boo.‘,_(w)
and the broadening hf‘o,‘,,_(w) in the absorp-
tion edges in the fundamental absorption ex-
perimentally by changing the magnetic field.
Therefore the practical evaluation of the line-
shape function is needed for both intraband
and direct interband transitions, which will be
given and compared with other theories in the

next section.

5. Explicit Expression for the
lineshape function

In this section we shall derive an explicit
expression of the lineshape function for both
weak roupling case and strong coupling one
given in Eqs.(4.17) and (4.45), respectively.

The central interest in the evaluation of Eqs.(4.17)

and (4.45) is aver aging over the impurity con-

figurations.

A. Weak coupling case

For the second order of the scattering po-
tential in Eq.(4.17) we obtain the line shape
function for the impurity scatterings as fol-

lows:

0. ()
SRR L N G RN

=< % -
< b —E; ¥ E:

e
U‘.»._):.A_. - (_A»ar -’-.A.l‘x‘,:x,/l‘,;,2 ,’(.h",'!"'_'
* b - EL+E]
Plhedan (L - E)) - (B — MM Drectin /S,
(o — B + EX)(ho — By + E)
Ao (BT - E7) — (B ~ EQ M Aemdicacdineldves
(ho - B + ET}Ac - ES + EY)

1 >ump

{inlerbend (ranmtion), 5.1)

ko, 1 f2)
A Jaen{(he)rasr = (Ao )i wedis. /00010 )
=< ¥
AMdest) e -E, +E,
[“:—.).1 - “-».)nlhljx'.u/j'.. “h;». Jie
+ ¥y = ale >
o Ay -E, +E, 1> me
{intraband iransmiion). {5.2)
where we have used the relations
CEXhe = ¥ X, (5:3)
A, Az
TS = T X, (5.4)
a AMrarl)



Jai-Yon Ryw, Dong-Hun Oh, Jin-Won Kim,

Doo-Chul Kim, Chi-Kyu Choi and Sung-Rak Hong

_ Xiae
(GeX)rsay = Wo-EFE (5.5)
N X
(CoX e = o E TR (5:6)
G, = -L)" {5.7)

for any operator X. Eq.(5.2) is identical with

those of Argyres ¢t al.(1974) and Kawabata(1967)

obtained for sufficiently weak scattering. In
the case of jf  /idi1a ™ FHn/idie
0, Eq.(5.2) is reduced to those of Ciobanu et
al.(1963) and Prasad et al.{1982) based on the
Jouble-time Green functivn approach. Note
that these equations are good for sufficiently
weak scattering which neglects the many-body

coherence effect.

B. Strong coupling case

By considering Eq.(4.45) given in a continued-
fraction manner we can obtain the general for-
mula in the strong coupling ¢ase. In order to
obtain the lineshape function ihSosi(@), we
must evaluate the quantities Agy; and wyi
for both transition cases given in Eqs.(4.14)
and (4.25), respectively:

Aep = hyili] = ~(LrPiLyy" M) 1ij. (5.8)

a1gi B (LePafu N/ S = —\Le PiLsPLry (N f fupe (59)

These quantities are contained in Eq.(4.45)
and should be averaged over the impu rity con-

figurations.
In the both transition cases, for the impu-

rity scatterings we obtain

-~

Agiae = '3-1/5,< {5.10)
Wiese. = SafASi. (5.11)
Agrse = —Safh. (5-12)
Vietie = Sii/ASa, {5.13)
where
Su = < T [he-denABeine, = Mo daedin s}
Alpa)
F{{Re-doors = (Beoidon0a /30,0, A Daces] Zimes

{5.14)

Sy = < X (Ao B3 - ED)
A{pa)
x ((h.—ih... - (":».h.-.lf_;./i.’...)
+E: - EX{(A-)ana. — (LY TRPYS A £ M {1 DY) PO
2}, {(ES - B2 - (B - EQ))
% (Re-iVaacdtin,/Jo.e, Zimes (5-15)
s-l
2< X fhodeenlte ey = theh sl /5l
Alsta+)
PO (LTS AT O FORTOTT ATV NS L LI IR 15.16)

A#a)

Sis

< © (B -EMhiaen

Mraeld)

X {(Ae-Jraer — lh:-a)x—l-l‘,\',\ I/J:u.)
Y {Be - B0
A pe)

X{(Meoifor — |hl*l)l‘|"‘|j;0|.\/j;tln}(h"')Aﬁ > - (517}
To derive Eqs(5.10), (5.11), (5.12), and (5.13)
we have used Eqs.(5.3) and (5.4), and utilized
the fact that any terms including odd num-
ber of h._; disappear in the impurity aver-
age. Then, taking into account Eqs.(4.45) and
(5.10)—(5.13) we obtain

8., 12) ,
—< v ‘(h,--’o.l-“‘t—-"l.a. -_(hx~1'.)).-.jx'.a,{7:,..,

Alpe) Ao - B+ Eg+ 20 -hE,.. o)

{(he-ide.r, ~ l“«—'l-.h.lr,x./i:.-.}(*a'-)l.-.I >ompe

R - B4 By 4 Ba — e, 0]
{interband transition) {5.18)
R, 1a(2)
e v ool o = the-diosasit fiden)

i Ao — By 4+ E, + 51~ A Eraera(@)
{{he—idraer — (Me-)a-1otr 1/ Jes 10 HAe-)ar1r >

+
B v Eeo + Ey+Eq - ibE (@)

el

ompr

{smtraband trensiion} {5.19)

where t'hﬁu,(;') of Eqs.(5.26)and(5.27) in the
denominator is the high-order colli sion term
given in Eq.(4.45) and

S0 = LB - B{)S. = Sa)/Su. (s.2m
2 = {(E] - ETISa - Sa}/Su, 15.21)
Z,4 = {(E) ~ EJ)Sa — 5.}/ S (5.22)
E = {(Eass = Br)Sia - ..)/;.. (5.23)

Eqs.(5.18) and (5.19) are the general formula
for the strongly interacting electron-impurity
scattering case. If the high-order collision terms
(Mf)h‘,,(ar), hT1a+1a(@)) in the denomina-
tor of Eqs.(5.18) and (5.19) can also be ap-
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proximated by the lineshape function (ihf)ou.u_
(@),7A0a +1a(@)) as on the lefthand side of
the said equation . we can obtain an infinite
number of coupled equations for the lineshape
functions, which is similar to those of Shin
et 2l.(1973) based on the Nakajima projection
operatur method(1958), of Lodder et al.(1968)
based on the proper connected diagram ap-
proach, and of Prasad(1982) based on the co-
lLierent potential approximation approach. If
the quantities 83, B;( and the high-order col-
lision term sAE, (@) are neglected, Eq.(5.19) is
reduced to Eq.{5.2) obtained up to the second
order terms for the weak coupling case.

Real and imaginary parts of Eqgs.(5.1), (5.2),
{5.18) aud (5.19) give the lineshift aud linewidth,
respectively. By using Eqs.(4.47). (4.48) and
(4.48), the frequency-dependent conductivity

is given by
Re{r, (<))
At E2) - [{\EL), ..
L A AN
noz, Ei-E
| 9 )

b~ By # Ex ~ AV aera, () + [AFge,a, )]

(interband transition) {5.24)
Refe, ()}
LR 1A e (T
n .“ Eﬂl - E- ocie
x Ph'la(*')
(Ao = Eeor + Eo - AVeesiolo)l! + Mee na )P
{intraband transition) (5.28)

where Re means “the real part of". Fgq.q, ()
and Voa,a,(w) associated with the direct in-
terband transition, respectively, can be calcu-
lated from Eqs.(5.1) and (5.7) for a weak cou-

pling case. Futhermore, the quantities f‘o,+|°(w I

V0o +1a (@) related with the intraband transi-
tion can be evaluated from Eqs.(5.2) and (5.8)

for a weak one as follows:

AFe .. (o) = Im{inte.. . (2)}

= 1< ¥ [(hdarfhemhre, = Moo bivarrin f5i0.)
)

xé(hw — E} + E3)
+ A ideass = BeideardT s /o0 A ida o 818w - ES + EY)
(Re=idoos, (1B — E3) — (Ef = EQ}huilrvandin /32,0,
El-E

-83~

x (5(ho - B} + EY) - $(hw — Ef + ET)}
theduca. (B = E2) = 4B5 = EMAumDsen il f30,
E-B

x {6thw — E% + E§) ~ 6(ha — E5 + ED))| >omp

(smterband transition) {5.26)

Al asinlo} = Im{inCan i)}

= x< S (1 700 WOTTS (7 T TORRE | VO POV N

Mrarl}

x4(hw - Ey + E.)
+ S {the-dar — (A e aeidienntIa 1o HA, s

\ee)

xd{hw — E.oi + Es) >imp

(snfraband irensition}) (5.27}
for weak coupling. We then can calculate the
lineshifts AV, o, (w)|= Re{iAB0a,a,(w)}] and

AVo0a+10 (W)= Re{iALoq41a (w)}, respectively,
through a Kramers-Kronig re lation:

N 1 3 R 5

(5.28)

where Co(w') is given by Eqs.(5.26) and (5.27).
To obtain Egs.(5.26) and (5.27), we have used
the Dirac identity

Eg(zti.)“‘:f’(l/z)*il‘(:), {5.29}

where P denotes Cauchy's principle-vahue in-
tegral.

sonsidering Eqs.(5.18), and (5.19) for a
strong coupling, we obtain the following equa-
tions for the spectral linewidths (Al 0a, o, (w).
hF g + 10 {w)) and the lineshifts (AVoa,a, (w),
"Voa + 1a(w)) associated with both the direct
interband and the intra- band magneto-optical
absorption:
A ene ()

e I(‘.—-)-.A.“l--.‘)»-. = humhaigenttingl e A 10aes ()
=€ i) o - B+ B+ B AV (@) + (M e )

(LT TN (00 YOPNP /Y 1 | LY O P
o -B+Ej+5a+ 89, o W)+ [WFse e ()

(interband transition)

(5.30)

.l-.o"u('d) .

e (Re—idoria{lhe-ihross = Wemidi—sodith- 1f5ds 10 IAT 1o+ 10 ')

T iy W Bi B4 St A VP + TS Ty
{(Ae-i)iasr — (Redr-sattios/Its s} hedoruA 10e s le)y

t Y e Eer ¥ Bt Bt WV ree P + Wl

{5.31)

{intraband tremsition)

X |

—e N v N £
iTor b = BS + E3 4 S0+ Ao I + (Al e, (0N
x(hw - E{+ EL +5.)

TSN (LY Y ! Y U0 SO /88|
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[ LTS PR LYY POTW VW 2 Ay | | TH) FYOOR
[Mw — B + EY 4 Eig + AV 40 0 ()] + (AP 0.0 ()]
x{hw — EL + EJ + Zisl| >imp

(snterband transilion) (5.32)

V0. ia(v)
< v (Ae-i)or1r {{Rei)rasr z (Me-i)a-sadii-1/0 110}
sdaet) (80— Br 4 Ba + S 4+ AV 1o 10 (W) + [AT 1 1u ()P
x(he - E, + E, +E;4)
+ v {(he-dreavs = (A —ihr- ulﬁ-l/ﬁu-)(‘:;-)uu
Niro) (M0 = Bart + Ex + i + AV 1041, (W] + (AT 40 1o (w))?
X (Aw = Equr + £y + Eid)] Diep

(sntradand trameition) (5.33)

where V,(w) and fl(w) in Eqs.(5.30), (5.31),
15.32) and (5.33), respectively, are the real
part and imaginary part of the high order self-
energy (—fhi}u,-(w)) in Eq.(4.45). If T'y(w)
and V;(w) of Eqs.(5.80), (5.31), (5.32) and
(5.33) for a strong coupling are approximated
by To(w) and V-'o(w), respectively, we obtain
an infinite number of coupled equations for
the linewidths and the frequency shifts, which
is similar to those of Suzuki The symbois Re
and I'm in Eqs.(5.26) and (5.32) denote, re-
spectively, the real and the imaginary parts of
the quantity. It should be noted that both of
these quantities are functions of temperature,
the external magnetic field, the impurity con-

centration and the incident photon frequency.

6. Conclusion

So far we have formulated the theory of
magneto-optical absorption lineshape for both
direct interband and intraband transitions due
to the interaction with impurities in semicon-

ductors.

The perturbation has been dealt with by
the two techniques based on the Mori-type
method of calculation. One is a closed-form
representation which is applica- ble to the weak
scattering case and the other is a continued-

fraction form repre-sentation which is applica-

ble to the strong scattening case. The continued-

fraction representation is expressed by both

the infinite expansion of the finite continued

fraction order and the infinite continued frac-
tion representation.

For sufficiently weak electron-impurity cou-
pling, the results otained by the in-traband
transition are identical with those of Argvres
et al. and Kawabata However, in the case of
the direct interband transition. our results for
the second order of the scattering potential
differ from those of Chni et al.(1984) and Yi et
al.{1987). The maiu reason results in che ap-
proximation thar Ly of Eq.(4.17) is replaced
by L.p under the assumption that P(;(L, -
Lp)X) = 0 for any operator X. For strong
electron-impurity coupling, the results obtained
for the intraband transition are similar to those
of some other authors(Prasad 1982 and Suzuki
et al. 1982) ob-tained by using the renor-
malization of the superpropagators to include
many body coherence effects in the ¢yclotron
resonance transition problem. These results
are given in the iterative manner while our
result is given in the continued-fraction rep-
resentation. The results obtained by the inter-
band transition are similar to those of Suzuki
et al.(1988) obtained by resolvent superoper-
ator method. Tlus we may claiin that ap-
plying the Mori-type projection approach we
can improve and gener-alize the earlier theo-
ries(Prasad 1982. Ryu et al. 1984, Suzuki et
al. 1982, 1988 for the collision broadening ef-
fect as well as the shift in the magneto-optical

transitions at finite temperatures.
There are several important issues includ-

ing nonparabolicity, degenerate band, spin and
spin-orbit coupling effects, valence band mix-
ing, and the interaction be-tween electrons
and holes {exitons) which would be important
at low temperatures. All these works are left
for future studies.
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