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Introduction

The dynamics of many physical systems in
engineering can be modeled by the state
equations. Optimal control is an important
class of modern control theory based on the
state-space model (Willems, 1983 and Johnson
et al, 1987). Let's consider the following
linear quadratic(LQ) tracking problem of a
time-invariant discrete-time system;

x(k+1)=Ax(k) +Bu(l) +c, x(0)=x, ()

J=%§ (Ix@-C13 +1u®@ 13 @

where A is an nXn system matrix, B an nXm
input matrix, ¢ an nX1 constant input vector,
x4 an nX1 constant target of the state vector,

* 33y AxT Y3
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Q2 0 an nXn state weighting matrix and R)0
an mXm input weighting matrix.

Assumption 1: (A, B) and (D, A) in
eqns. (1) and (2) are stabilizable and
detectable pairs, respectively, where Q=

D™D.

As is well known, the steady-state solution
(Singh et al, 1978 and Friedland, 1986) to
this problem is given under Assumption 1 as

follows :

u(k)= Gx(k) +d 3
where G and d are given by
G= -RTBTA-T(X-Q), . (V]

d= -RTBTA T(s+Qxd), 5)

Here K and s are the solutions to the discrete
Riccati equation (DRE) and tracking equation
(TE). respectively, given by
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K= Q+ATK( +BRTB'K)7A, ®
s = -QxL-ATK (I +BRTBTK)"!(BR!BTs—)
+ATs. ™

Analysis of Steady-State
Tracking Error

The following theorem gives the steady-state
tracking error of the above optimal tracking
algorithm.

Theorem 1: The optimal control algorithm,
eqn. (3) for the LQ tracking problem has the
steady-state tracking error given by

e= {[,-A+BRIBT(-AD1Q{(],
-A)xi-c}. ®

Proof : Substituting the optimal solution,
eqn. (3) into the state equation, (1), we
obtain the following equation.

x(k+1)= Fx(k)+h 9)

where F and h are defined as

F= A+BG, (10)
h=Bd+c. (1D

The solution of eqn. (9) is given as
k1
x(k)= FE x(0)+§‘. Fih. (12)

If k is large enough for the system to reach a
steady-state, eqn. (12) can be expressed as
follows

x()=F* x(0)+ ([ -F)th. (13)

Define the state at steady-state as

xsa‘}im x(k). (14)

Since F in eqn. (13) is asymptotically stable
matrix, eqn. (13) can be expressed as

X= [In—F] “th, (15)
Therefore, we can see that the state at
steady-state is a constant vector and the
control input at steady-state is also a constant
vector from eqn. (3). Hence we obtain the

followings from the necessary conditions for
optimality (Middleton et al., 1990)

x,=Ax +Bu_ +c, (16)
u=-RBTp_ an
p,=Qx,~x%) + ATp, (18)

where u, and p, are the steady-state control
input and costate vector, respectively. From,
eqns, (16), (17) and (18) we have

[In-A] x$=—BR‘1BT a n—A"] -1Q (xs—xd] +c. (19)
Define the steady-state tracking error as

e =xtx_. (20)

Substituting eqn. (20) into eqn. (19) we can
derive eqn. (8). This completes the proof.
Remark 1:

(a) Theorem 1 reveals that the steady-state
tracking error always exists and depends on Q
and R unless ([ -A) xd-c=(.

(b) An increase in 1 Q| or a decrease in
IR 1 reduces the steady-state tracking error.

(c) The computational burden of the above
optimal tracking algorithm is comparatively

-J04-
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large.

In the following, we describe an optimal
tracking algorithm which is advantageous over
the conventional one in steady-state tracking
error and computational burden.

Proposed Method

Let us take the performance index to reduce
the steady-state tracking error as follow :

L=AE UxW-¢13 + Tu-w 1) @

where u® is an mX1 pre-determined nominal
control vector, which will be discussed later.
Define new state and control vectors as

z(k) =x(k)-x4,
v(k)=u(k)-u®.

(22-a)
(22-b)

Using eqns. (15-a) and (15-b) we can trans-
form the tracking problem of eqns. (1) and
(14) into the following regulator problem with
constant input;

z(k+1)=Az(k) +Bv(k) +c,, (23)

L=AE U200 1% + 1V 13 24)
where

c,=(A-[ Jx¢+Bu+c. (25)

The following theorem gives rise to the
steady-state tracking error for the proposed
optimal control algorithm.

Theorem 2: The steady-state tracking error
for the proposed optimal control algorithm is
given by
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e =-{[-A+BRIBT( -AT)"1Q} I, (26)

Proof : From the well known necessary
conditions for optimality and Proof of Theorem
1, we have at the steady-state

z,=Az +Bv +c,, @n
Vs=—R’l Bqu' (28)
q,=Qz,+ATq, (29)

where z, Vv, and q, are the steady-state
control and costate of transformed
regulator problem, respectively. From eqns.

(26), (27) and (28) we obtain.

state,

(I,-A) z,=-BR"!BT(1 -AT)"1Q z,tc,. (30)

(20) and (22-a),
we can derive eqn. (25) from eqn. (29). This

Taking into account eqns.

completes the proof.

Corollary 1 : The sufficient condition for zero
steady-state tracking error is that a vector [In
-A)x%-c belongs to the column space of an
input matrix B.

Proof : Corollary 1 can be proved directly
from eqns. (25), (26) and Ref.
1974), Hence the proof is omitted.

(Brogan,

Theorem 3: Under the sufficient condition
for zero steady-state tracking error the op-
timal control law is obtained as

u(k) =Gx(k) +d, (31
where the compensation vector is defined as

d,=-Gx3+u" (32)

Proof :
problem of eqns. (23) and (24) is zero under

Since Ch in transformed regulator
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the sufficient condition, the optimal control
law of the transformed system is given by

v(k) =Gz(k) 33)
where the feedback gain matrix G is obtained

from eqns. (4) and (6). Substituting eqns.
(22-a) and (22-b) into eqn. (33) we obtain

eqns. (31) and (32). This completes the
proof.
Remark 2:

(a) Theorem 2 and Corollary 1 reveal that
the steady-state tracking error does not exist
regardless of Q and R if a vector [In—AJx“-c
belongs to the column space of a input matrix
B. In this case, the weighting matrices Q and
R affect only on the transient responses.

(b) The optimal control law, egns. (31) and
(32) is now obtained without solving the TE,
eqn. (7). Thus the computational burden is
alleviated.

(¢) If a vector (I,-A) x%-c belongs to the
column space of B, the nominal control input
u® is obtained by

wi=(BTB)1BT{(I -A)x%-c}. (34)

(d) If a vector (I -A)x%~< doesnt belong to
the column space of B, the nominal control
input u® obtained from eqn. (34) is a least-
square approximate solution. In this case, the
steady-state tracking error of the proposed
method is given as

e,,=(I,-A+BRBT( -AT)"1Q} ({1, |
-B(B™B)"1BN((I -A)x%=)). (35)

Numerical Example

To illustrate the presented results we con-

sider the river pollution model (Tamura, 1974

and Singh, 1975) of river Cam near Cam-
bridge.

x(k+1)=Ax(k)+Bu(k)+c
where,

018 00 0 o
A= | 025 027 o .
0.55 0. 018 0.
| 0 0.5 -0.25 o0z

-2.0 0

B= 0.
-2.0

0 0.

c=045 6.15 2.0 2.657,
x,=0. 0. 0. LOT.

Computer simulations are carried out for the
following two cases and final time is chosen
to 30 steps which are sufficiently long enough
for the systém to reach a steady-state.

Case 1I. [ID—A]xd—c belongs to the column
space of B; x=(4.16 7 55 7T

Case 1. (I -A)x%-c does not belong to the
column space of B; x4=(5 7 5 DT

A summary of the simulation results (Kim et
al., 1990) of both the conventional optimal
tracking algorithm and the proposed omne is
given in Table L.

The simulation results show that the steady-
state tracking error of the proposed method is
smaller than that of conventional method in
both cases and these results are consistent
with eqns. (8). (26) and (35). Especially the
steady-state tracking error of the proposed
method in case I does not exist irrespective of
Q and R. These weighting matrices affect
only on the transient responses.

-106-
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Table 1. Summary of the simulation results

Weighting Steady- .
: y-State Tracking Error
Method Matrix
Q R Case I Case 1
I.| 501, (-1.13 .39 -.36 -.41)T (-.34 .40 -89 .43)7T
Conven-
tional I, 1001, (-1.22 .42 -.45 -.4N)7 (-.40 .42 -.99 47T
Method
I, | 5001, (-1.30 .45 -.54 -.52)T (-.47 .45 -1.09 .52)T
I,| 50I, 0. . .29 0. .07
Proposed
I, 1001, 0. 0. .29 0. .02)T
Method
I.| 5001, 0. 0. .29 0. .07
and the conventional one is derived analy-
. tically. As a results, the steady-state tracking
Conclusion error can be calculated by the given state
equation and performance index without
In this paper, we describe an optimal solving Riccati equation. Also, a sufficient

tracking algorithm which is advantageous over
the conventional one in steady-state tracking
error and computational burden. Steady-state
tracking error of both the proposed algorithm

condition for zero steady-state tracking error
is presented.

A similar technique for the continuous-time
systems is under study.
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