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Summary

of cyclotron resonance lineshape for the system of electrons in interaction with
is dealt with

A new theory
impurities or phonons is introduced, The collision term appearing in the Kubo formalism

in the relaxation time approximation, The many body conductivity tensor is reduced to two different

forms in the single particle formalism, But the two conductivity formulas give the same lineshape
implying that the two techniques are identical., The thermal relaxation time included in the
resulting in the disappearance of any danger of divergence in some

function,
lineshape function is finite,
higher order terms usually excluded in the formula,
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1. Introduction we formulate the theory of cyclotron
resonance lineshape by using the two
The study of cyclotron resonance lineshape projection techniques (Argyres et al. and Ryu

is known to be a powerful tool of
investigating electronic structure of solids, The
absorption lineshapes in semiconductors are
typically broadened by electron-impurity and
electron-phonon interactions.

In many different classes of theory (Argyres
et al,, Badjou et al,,

Lodder et al,,

Choi et al,. Kawabata,

Prasad, Ryu et al., and Suzuki
et al ) the kinetic equation approach including
the Kubo formalism based on the linear re-
sponse theory is fundamental to our

understanding of effects of interaction on the
absorption linewidths and frequency shifts. In

dealing with the perturbation, projection

techniques and diagram methods are
frequently adopted (Argyres et al,, Badjou et

al., Kawabata. Lodder et al., Prasad, Ryu et
The

functions in this category are usually given in

al., and Suzuki et al.). lineshape

the perturbative expansions in powers of

the scattering strength, Argyres et al.,

however. claim that correct expression for the

lireshape function canno: be expanded as

such, because some higher order terms di-
verge for frequencies near the cyclotron
frequency.

The purpose of the present work is to
reformulate the former theories [Choi et al.)
in such a way that the expansion is valid even
at the resonance peaks, This paper is
2 and 3,

review the Kubo formalism for the electrons in

4,

organized as follows. In Sec, we

the impurity and’‘or phonon fields. In Sec.
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et al ), and show that the expansions do not
contain any divergent terms. The last section
is devote& to discussion about the formalism,
Comparison with some other theories is also

made,

2. The Kubo formalism for the

Electron Conductivity in the Many-
body Formalism

Consider a system of many electrons subject
to a time-dependent external electric field of
amplitude E and angular frequency o given by

E(t) = Eexpliwt). 2.1

Then, the tota! Hamiltonian of the system is

Hr(t) = B + H,(t),

H,() = é 2.3

:=I

- E(1),

where H denotes the Hamiltonian operator
corresponding to the time-independent part, N
the total number of electrons in the system,
and r—l the i-th electron position vector,

We suppose that the external field is initially
absent and the system is in thermodynamic
equilibrium with a temperature T, The initial
state can be described in terms of the grand

canonnical density operator
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m:p(—w) =czp(aN—BH)/E (24)

with

Z =Tr{eczplaN — 3H)}. 2.5)
Here a=3¢ and 3= (kBT)" where kg and ¢,
respectively, are the Boltzmann constant and
the chemical potential, and Tr denotes the
many-body trace,
We also assume that the system is not so
far from the equilibrium, Then we may take
plt) = po + ;ll). @2 6)
and the Liouville equation dp(t)/ot = [Hr(t),
L]+ E(Dp(1)/0) con,

{Jones et al,)

can be written as

iopy(t}/ot = [H,py (1)) + Hi(t), 0]
+ §(8p(t)/3t)can. (

[aS]
~1

in units in which k=1, where we have used
the fac: that [(H, p,)J=0 and neglected the
term (H,{t). o (1)) in approximation. The last
term on the right-hand side represents the

interaction with the surroundings during the

time which is reached from equilibrium state
to nonequilibrium state by the external field.
that the

Here we may adopt the “Ansatz’

collision term appears as a result of the
thermal relaxation in the existance of the ex-

ternal field, We then have

1(8p(1)/8t)conr. = =i 1) /72 (2.8

where n =~ (kg(Te~T))"' is the thermal

relaxation time which depends on the

difference between the electron temperature T
the electron

in the equilibrium state and
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temperature T, in the nonequilibrium state by
the external field since the electron energies
between before and after the external field
differ under the condition that the background
temperatures T are kept,

In order to obtain p,(t), we now define the

density operator in the Dirac picture as

p1o(t) = exp(s Hi)p, (t)exp(—iH1). 2.9

Differentiating Eq.(2.9) and considering Eqs.
(2.7) and (2.8), we obtain

i9p1p(1)/8t = [Hip{t), po] — ipaplt) /72, (2.10)
where
Hyp(1) = exp(i BOH (1) ezp(—i HY). 2.1

Integrating Eq.(2.10) and taking into account
Eq.(2.9) we have

f
ol = (=) [ do capl~(t - )/r]

x exp(—iH{t ~ o))|Hi(o). polexp(i H{t — 8)).
(2.12)

On the other hand,

calculated in terms of the

the average current
density can be
density operator as

< AT >=TrlJ ()], (2.13)

where j is the total current operator given by
_ K
J= Se(dﬁ/dl), (2.14)

=1

and AJ is the total current minus the static
(2.12) arnd (2.1}
the k-component of Eq.(2.13)

value, By using Eqs.(2.3).

succesively,



4 Cheju National University Journal Vol 31. (1990}

can be written in the following form :

<AL >= Y Su@)Ein). 2.15)
o

where 1, k=x,y,z and

@) = FLT(Su(t))- (2.16)

Here FLT(f(t)) is the Fourier Laplace trans-
form (FLT) of f(t) defined as

FLT(U) = [ fheer(—iotias, @17
O:u—i/fh (2.18),
and
IS
Znlt) = (—i]Lim(l/Oo)Tr(lpo,Scf".;].h(t)),
=]
(2.19)

where (1, is the volume of the system, and
“Lim" denotes the bulk limit, By considering
Eq.(2.14), the time-dependent response
function 2, () can be reduced to

Sult) = Lim(1/0g)T+{(1/2n5) / dz explaR — B2)

X (B =z)7" gy (B - o) D(0)/E) (2.20)

where c is any simple closed curve enclosing

the poles and
Ji(t) = exp(1 Ht) Jrexp{—s Ht). 2.21)

Adopting the approximation H=H, in Eq.
(2.20), using Cauchy's integral formula, and
considering Eq. (2.16) we have

« FIEn) - F(E,)
g E,-E,

m.n

Sule) =

-84~

X<n|Ji|m><<m]|dy(2)|n>>5,

(2.22)

where F(En) is the many-body distribution
function for the state |n) with the energy
eigenvalue En, (A)B denotes the average of A
over backgrounds, and

Jua) = [~ cep(-iat)aute). 2.23

3. Reduction to the Single Electron
Formalism

By using the Kubo identity, Eq.(2.19) is

reduced to
Eu(0) = Lim(1/00) [ Tripwdi(=i80) 30},

(3.1

which can be changed, by using the modified

Hamiltonian formalism (Fujita), into

Zult) = Lim(1/0,) l.in% /0w < Tr*(ppJelt)) >5,
.y—

(3.2

where Tr® is the many electron trace and

py = exp(eN — BH')/Tr*{ezp(a N - BH')},
(3.3
B=HF-J3 (3.4

with U being a constant vector,
Let us introduce the number operator in
terms of the creation and annihilation

operators as

fy, =aja, {3.5)
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which can be expanded on the following
basis :

¢’=28:<0lﬂ>. (3.6)

g6, ="a,<v|ad>. (3.7)

Then _Ik and H can be expressed in the sec-

ond quantized formalism as

=YY <uii|v>,,. (3.8)
P ¥

and

E=HB+EE<,\|I;!;4>&,,\. 3.9
Y

Here jk is the single electron current operator,
HB the background {impurity and/or phonon)
Hamiltonian, and h the single electron
Hamiltonian which is the unperturbed electron
Hamiltonian h, plus the scattering potential
V.

In representation in which H’—{ITI is diagonal

we may write

B — (K8 =S (K, = ¢)aps + Hp, @3.11)
b
kS = b, (3.12)
and
W=h-j. i (3.13)

Then. the main part of Eq.(3.2) becomes

Tr{podult)) = tre{5i{t)). (3.14)

Here “tr®” means the single electron trace and

Jrlt) = explit(h” + Hp)ljp. (3.15)
= [exp{d(h' —¢)} + 1], (3.16)

where h* and HY are the Liouvile operators
corresponding to h and Hp, respectively. By
making the approximation n=f, in Eq.(3.14)
which corresponds to h=h, [Argyres et al..
Choi el al., and Kawabata) and considering
Eqs.(3.2), (3.14) and (2.15). we obtain

Iy

<AL >=Y < A >Ui= 8 V521 E (1)
=1 i

(3.17)

for the single electron formalism, and the

conductivity tensor 3'“ (w) is given by

6':[(0) = (—l’) o f((ﬂ) - f‘ia)
) ;-_; €4 — €,

<eln|A><<B|R(d)|a>>5. (3.18)

Here  f(e.) is the Fermi distribution function
for the single electron with the energy ¢. in
the state |a), and

Ri2)= (0 —h* - H3) Y (3.19)

On the other hand, by applying Kawabata's
approach which is based on the Kubo
formalism and the Mori method of calculation,
we can also obtain a similar form of the
conductivity in the single electron formalism as

follows :
Loy o Jlea) - flead
aH(‘) _:; & — €,

X< FLT(<a|s|8><B8it)]a>)>p. (3.20)

Here. if we let 5=a+] and n — o, Eq.
(3.20) is reduced to that of Kawabata's

cyclotron resonance formula. In fact, Eq.

-85-
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(3.18) can be obtained by calculating Eq.
(3.20).
give the same result, In the next section we

Thus the two approaches ultimately

will present two different methods, starting
witk Eqs.(3.18) and (3.20).

4. Formulation of the Theory

(a), Description of the System
It is well-known that when a static magnetic
field is applied along the z-direction of an
isotropic semiconductor, characterized by the
A= (0, Bx, 0), the

Hamiltonian of the unperturbed electron is

vector potential
given by

ho = [p} + (py + mwoz)’ + pl/(2m).  (4.1)
where p and m, respectively, are mormentum
and the effective mass of the conduction
electron and w, is the cyclotron frequency,
The eigenvalues ¢ and the eigenstates |
corresponding to h, are characterized by the
Landau index N and the electron wave vector

k:

€ = ene = (N + 1/2)wp + k1/(2m), 4.2)
le> = |N.E>
= A expliyky + i2k, ) Hyllx — X)/ro)
X exp{~(x — X)?/2r}}, (4.3)
where
A= (2N /5L, L) (4.4)
o = (muwo)™'7, “.5)
X = -k, /(ma). 4.6)
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Here Hy is the Hermite polynomial and Ly and
L

- respectively, are the normalization lengths

in the y- and z-directions,

For the phonon background we have

V=Y tbr+ 97870 (4.7)
A
¥ = Ciexp(i§ - ). 4.8)
Hp=Hy,=>_wibjby, (4.9
[
where b} and b; respectively, are the

creation and annihilation operators of a
phonon with monentum q and energy wy and

C; is the interacton operator.

For the impurity background we have

Vo= N Verpti- ), {4.10)

HE=H,m,-=0, 4.11)
where 1; is the interaction operator in the

momentum representation,

(b). The Theory of Lineshape
For the circularly polarized electromagnetic
wave of amplitude E and frequency w,
the absorption power is given by (Kawabata)
P = (E*/2Refo.-(a)]. (4.12)
where “Re” means “the real part of” and the
explicit form of the conductivity tensor 5+_({3)
for the cyclotron transition can be obained by
taking S5=a+1 either in Eq.(3.18) or in Eq.
(3.20)
Model A
For 8=«a+1, which is the condition for the

cyclotron transition, we have from Eq. (3.18)
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Forf@) = (=iwg) ' Y[ flea + wo) = fleJUS)"

X <[R()|a>5,

e (4.13)

where
7= jr iy, (4.14)
Xo=<a+l|X]a>. (4.15)
Riz)= (s = k" - B Y5, (4.16)

With the use of the projection operators P and

P’ defined as

PX =5 (X./iD) (4.17)

P=1-P, (4.18)

by Argyres and Sigel, we have the following

relations :
(hg P'X), =0, 4.19
S P X)arrg= 3 Na-rs (4.20)
[} 3{=a}
(hoj™ Ja = wos - 4.21)

Then from Eq.(4.16). we obtain

[R(@)a = 57 1(@ = wo) = (Vauyars = Vaa) — i Bal@)] %,

(4.22)
where
JT(Ba(3) =< in“ SGo(P'V SG) P (h”
FEs N> - (4.23)
Here the factor S is given by
S=1 (for smpurily scatterings), (4.24a)
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S= S(GoH;)"' (for phonon scatteringe).

m=0

(4.24b)
and

Go=(w—hy) . (4.25)
(For the details of the calculation technique,
see Choi et al.]) From Eqgs. (4.12), (4.13) and
(4.22), we see that lineshape is depicted by
the collision factor ga(u‘;), Thus the present
authors named the factor the lineshape
function.
Model B

The conductivity tensor can also be obtained
from Eq,(3.20). By putting S=a+1 we have

7o-(3) = (wo) ' S| f (e + wa) = flea)] < Vul@) >5.

(4.26)

Here ?n(a'z) is the FLT of y,(t) given by

Yalt) = (7,77 t))ae 4.27)

where
(4.B). =(A4'Blaa= <0 |4 |8><B|B|o>.
-4

(4.28)

For the calculation of Y_(@). we define the

projection operators for the state '« as

(7. 4)s ..

Poa= YAk o
G’ (4.29)
P,=1-F,. (4.30)

This definition is different from Argyres and
Sigel's and Kawabata's. Following Mori, we

separate ' (t) into the projective and vertical
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components with respect to the j as

It = Pty +Payr(t)
f
= Z0* + [ Za(ealt - 0)de, 4.31)
1]
where
= L0 4.3
Zalt) = U'-J"]a\ .
fit) = expliPa(h™ + Hp)tI 1, (4.33)
Ni=iP.(h> + Hp)J". (4.34)
In order to obtain y,(t) or Z_,(t). we
differentiate Eq.(4.32) as
F2u0) = iwoZ(0) = [ Talt = 012 (e)dn
(4.35)
where
ro =Yt T EA0. (4.36)
: (U750 %)a
Wo = EL’('('L_*’—J;E‘)EM =wo+ Va?l.nfl - “’an-
Tl 4.37)
Then comparison of Egs, (4.27), (4.32) and
the FLT of Eq.(4.35) leads to
< Yal@)>p={ (75" )e }B. (4.38)

'.(“-" - ""a) + fn (‘:")

where [ (@) is the FLT of I (t) defined by
Eq.{4.36). which can be calculated further via
Eqs.(4.33). (4.34) and (4.36) as

(7._v.7-‘ )ara (” ='[]'_e‘” Cl‘P[’.Pa‘h' + Ha‘ )')Pa[hu

+ Hi}i s (4.39)
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where we have used (P_X),=0. (For the
detailed procedure of calculation, see Ryu et
al )} By taking into account the relation P,h{

GoP.X =0, the FLT of Eq.(4.39) leads to

JHT.(@) =< Y[V SGo{P.V*SG,} P,

LEd]

X (k* + HE)S o >3, (4.40)

where S and G, are defined as Eqs. (4.24a),
(4.24b) and (4.25).

Comparing Egs.(4.38) and (4.40).
respectively, with Eqs.(4.22) and (4.23) we
see that

G IR(@)e = iYa(@), (4.41)
B.(@) =T,.(2) 4.42)

In other words, we have arrived at the same
formula, starting with different expressions

and using different techniques, We see that

Eqs.(4.12), (4.13). (4.26), (4.22). (4.38),
(4.23), and (4.40) build the flame of the
theory, It is to be noted that the lineshape

function B, (&) (or I:"(u?)] has been expanded
with respecct 10 VX which corresponds to the

scattering potential,

5. Disscussion and Conclusion

(a).
For n=0 in Eq.{(4.23) or Eq.(4.40) we ob-

tain for the impurity scatterings

The Lowest Order Approximation

< v Va+l.!“’.‘ia-ﬂ - Vﬂ-laj;—llj:)
oy O —€pt €,

iBo (%)

Blxa+1)
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Ve — V. S+ ': ¥/
+ T (Vor i +18+133 /30 )V e Sims, 5.1
siza) @ = €o+1 T+ €3
where we have used Eq. (4.20) and
(Gox)y, = (O ~€e+ (.)-IX,,. (52)

Eq.(5.1) is given in the second order of the
and is enough for
Eq.(5.1)

similar to some others’ expression (Kawabata

scattering potential

sufficiently weak scatterings. is

and Lodder et al.), the main difference being
that w has beén replaced by w =w—1i/%.

For the phonon scatterings, we have

FI(iBa(2)) =< (V*SGoP'(h* + B} )1*)a >,
5.3

in the lowest order approximation, where

Y (GoB; )G,

G,’ = SGO =

= (9-hy - H)™ (5.4)

We define the phonon state as (Ryu et al.)

[q>Eln'-,,n'-,.n'-,,---‘ﬂ'-'.,-n>, (5.5

and take into account the following matrix

element :
<ql<B|GupXle>|d>

_ <gi<BiX|e>lg> _
To-gta-<g|B|¢>+<¢| B¢ >

(5.8)

It should be noted that the matrix element is
given with respect to both the electron states
(lay,18>) and the phonon states (|q),lq’)).
Then, with the help of Eqs, (4.20), (5.5) and

(5.6) the lineshape function in Eq.(5.3) leads

to
iBo(@) = T(1+np)
T
x( v (Wos18l(3F }a.0ar ~ (3 )a-vrada_s/35]
pan—y
9201} Do te—wp
+ A “‘71"03 - ('71')01-!.’*!1.;/1:'-"‘7; )ﬂn)
,z::, “ €1t €+ Wy
+3np
q
X ( - (‘),t)aﬂ.plh.')a.aon - (’)i)l—l.-J'i-l/J:]

B(ra+1) G-t tuy

+ (37 )os = (9 Dasr.0+1J3 3 W) 30
@ = €gr1t e —wy

) (5.7)

sra)

where n; is the phonon distribution function,
Eq.(5.7)

formula,

is similar to Choi and Chung's
and Lodder and Fujita's runction,
The critical difference is that  has been

replaced by w.

(b). Validity of the Expansion

We like to show that Eq. (4.23) or Eq. (4.40)
does not include any terms which diverge. In
other words, the lineshape function B,(@) ., or
T, (@)
the validity of the expansion, it suffices to

is finite even at w=w,, For proof of

show that each term in Eq.(4.23) or Eq.
(4.40) does not diverge at w=w,. The part
for n=0 in Eq.(4.23) or Eq.(4.40) does not
contain any terms which are in danger of

divergence. For n=1, we obtain

UliBaldNlams = < (@-eptea)”
8{=a+1}

x I E (Q'—f'-,'f'fa)_l‘-a?l.ﬂ"!“ln‘m
Tmol)

DN CETE X i VRS %01 98 S0
=a)

+ N (@ tea)!
Bixa)

x [ Z (Q ~ €as1 +€7)—lnool;1‘-7 !iyio
l=al

-86~
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S l@ — €y + (,)_IV,, 19 (Pan)-yﬂ‘-io] >g,

Ft=a+l)

(5.8

where = (h"+HgZ )i. The terms which are
considered to be in danger of divergence come

from the parts containing (P,Q) . and P 0),;
in Eq.(5.8). The first is rewritten as

lst= < S (@-—gt+e)o—c+e )’
B(wa+l)
XV,,,.L’V,_IF(UQ + "n*lg-‘-l - ac)j;_l >p .

(5.9

in danger of
In that

The only term which is
divergence is for g=a and w=w,,

case we have

VarraVa-ralwo + Variars — Voo i,

ot = (/7)o /)

<

>g.

(5.10)

We now see that “Ist” is finite at w=w, since
r, is finite, The proof for all other terms can
be performed in similar ways, Therefore, the
thermal relaxation time 7, acts as a

convergence factor for higher order terms,

(c).

We have derived the conductivity tensor and

Conclusions

the cyclotron resonance lineshape function for
the system of electrons in interaction with
impurities and phonons, For the derivation of
conductivity tensor, the Kubo formalism has

been utilized, The collision term usually

neglected in some theories have been included
here. leading to the appearance of the ther-
mal relaxation time. which comes from the

scatterings in the existence of the

electromagnetic field.

-90-

The perturbation has been dealt with by the
The difference is that the

Fourier-Laplace transforming is performed first

two techniques,

in one while last in the other, The projection

operators defined by Argyres and Sigel as
Eqs.(4.17) and (4.18) look different from
those defined by the present authors as Eqgs.
(4.29) and (4.30).
identical with each other in cyclotron transition

But the two types are

problems, yielding the same result,
The lineshape functions obtained are similar

in form to some other authors’', The critical

difference, however, is that the thermal
relaxation time ¢, is included. Unless t,
approaches the infinity, any danger of

divergence in some higher order terms of the
lineshape functions disappears.

There are several important issues under
continuing study, including electron-electron

interactions, indirect transitions, and non-
parabolic band formalisms, Furthermore, the
inclusion of exchange effects will be required
(Badjou et al.} if the density of electrons is
not so small, All these works are left for fu-
ture studies,
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