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Summary

The space KBV is a banach space. The spaces I<BV and KBV is imbeded in X@BV. K@ —boun-
ded variation functions are bounded and if lim 130, ¢,(x)*=<0 for x)0 then these functions have only
simple discontinuities.

member of {In} is a closed subinterval of

Introduction (a.b), (MU }=C(a,b) and (c) any two

members of {I} are mutually non-over-

In convenience we will call a collection {I } lapping, i.e, that their interiors are disjoint.
to be the prepartition of (a,b) if (a) every we will denote f(I)=f(y)-f(x) and |I|=|y-x|

*x Alcoid 2a4
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for I=(x,y).

We consider the supremum of EIf(I )]
over all prepartitions (I} of (a,b) denoted by
supT|f(I)|. A function f is of bounded
variation on the closed interval (a,b) if v,>(f)
=sulef(In) I<eo0,

Equivalently we could say a function is of
bounded variation on the closed interval (a,b)
if there is a positive constant C such that for
every prepartitions ([} of (a,b), ZIf(I)}I=C

Cyphert (1982) generalized this idea by
considering concave functions ¥ on (0,1) in
his dissertation. The function & has the
following properties on [0, 1]);

. X is continuous with ¥ (0)=0 and
k(1) =1,
(2) » is concave and strictly increasing

and
i ?
@®) Jim. _i)f_X)_ oo

A function f is said to be of X —bounded
variation on (a,b) if there exists a positive

sequence P={(¢ }, say @ —sequence, having

the the following;

(1) ¢,: (0 @)—(0 =), $,(0)=0 and ¢_(x)>0
for x>0 and neN,

(2) ¢, are convex for neN,

@) #,,,00¢s,(x) for all x)0, and

@ £¢,()=c for all x)0.

A function f is said to be of @ —bounded
variation on (a,b) if V5 (f)=sup Z¢, (If(1)1)
(oo where the supremum is taken over all
prepartitions {I} of (a,b). @BV denotes the
set of all functions on (a, b} such that cf is
cf @ —bounded variation on (a,b) for some
c30.

Functions of @ —bounded
variation

Kim (1986) combined above two concepts
(2)
DEFINITION 1, let a real valued function f

constant C such that for every prepartitions {I) be defined on the closed interval (a, b). f is

if {a, b}
z((nl,|)
Tt ISCEX (5
Note : if xﬁ_‘f}). l(_(f"). (o, the set KBV of

X —bounded variation functions is the set BV
of bounded variation functions. So, to
enlarge the class of functions under
consideration the condition (3) has been
imposed.

EXAMPLE (1) x(1-logx), xx=x0
1\l(x)={
0 ., x=0

(2) ® (x)=x* for 0¢all

On the other hand, Schramm (1985)
generalized the above idea by considering a

said to be of @ —bounded variation on
(a,b) if there exists a positive constant C
such that for every prepartitions I of (a.b)

IL,|
4, (1£0)1) SCTx (L)

The total K@ —variation of f over (a,b) is

defined by
. =6 (£Q)D)
Wo)=V,y,()=sup TN

K==
z b-a

where the supremum is taken over all
prepartitions [In} of (a bl. We denoted by
KOBV the collection of all functions f on
(a,b) such that cf is of X @—bounded
variation of (a,b) for some c)0. Note:If we
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take ¢ (x)=x for all ne€N, then

K @BV=¥XBV examined in (1), If we take
K (x)=x, the x PBV=@BV examined in (3)
Along to forms of < and @ —sequence, we
have the following easily.

THEOREM 1 (1) For fixed @=(¢) and
%,Sic,, we have ¥,@BVCx,PBV, and
1Yo () S Ve () if fEX, OBV,

(2) For fixed X and @,=(¢ ). @:={8,},
B, =Py, We have K@ BV~ x@®,BY, and
1<Ve: (f)skval(f) if feX® BV,

(3) For K,5I¢ and @.=(g, )}, @.={s,)},
#,,2%,, We have ¥, ®,BVCX,0,BV, and
1K Ve ()= Vo (f) if € DBV

Since K(x)=x on (0,1],
following.

we have the

COROLLARY 2. @BVCK®PBYV, and Vg (f)
=Vp (f) if fe @BV. In particular, BVCKBV

THEOREM 3. If f is montone, then we
have
Vo (£)=¢ (If((a, b)) ).

Proof. Clearly 1V (f)2¢.,(If((a,b))]). let {[}

be a finite collection of nonoverlapping
subintervals of (a,b) and let 3’ denote
summation over nonzero terms, then
e (LAY N=5"8 (110 )]
>N HIBT)
SE @A) DAL DIEA)].
Since ¢, is convex ¢,(x)/x increases with x,
thus the above is not greater than
(. (I£(Ca. D) D)/1£((a, B N 1£(,) |
=¢,(If ((a, b))
It follows that V4 (f)<¢,(f((a, b)) and so, by
Corollay 2, Ve (f)=¢, (f((a,b))

LEMMA 4. If f is i(@—bounded variation,
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f is bounded.
Proof. For given partition a<x<b, there is a
constant C)() such that
#:(I£G)-f(a) ) +¢. (1£(b)-£(x) |)
(CUA(x-a)/(b-a)) +<((b-x)/(b-a))]
Thus, #, (If(x)-f(a){){2C so that |f(x)|<{¢" (2
O +lf(a)l

LEMMA 5. Suppose that a function f is of
(D —Dbounded variation on the closed interval
(2,b) and xVe (f:a,b)=C. Then f is IKP—
bounded variation con each closed interval
(u,v]) and Vg (f : u, v) S3C where asu{v=h.

Proof. Let {I}
(u,v). then

T UMD
=T, ¢.(|f(li)I)+¢n+l(|f([a.u3)|)+¢n+2
(I£(Cv, 01D

zed @i « (G2 + <D
sc i@ i+
@c £ (i

Since K II")S?((' l) and 2 ILI=v-u so

that 11l
K=x(s_ SRRy

v-u

be a prepartition of

=]

If fel<BV or f€ @BV, then f has only
simple discontinuities. We have the following.

THEOREM 6. Let f be #® —bounded
variation on the closed interval (a,b). If
im+£h., 6,()=0 for x)0, then f(x,+)
and f(y,—) exist for a <x{(b and a=<y{d
respectively. -

Proof. Suppose that B= , |y f(x)> x[x,
f(x)=A. Then there exists sequences of

points {x'}2 . x’>x, such that I, X, =%,
and U0 f(x)=A, and {x")]] X} Y%, such

that I x7=x and MU f(x{)=B. Thus
there exist positive integers N, and N, such
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that f(x)SA+ (B—A)/4 when iZN, and £(xP)
=B—(B—A)/4 when j=N, Now, for each n
=],2---, we can choose points X, k=12,
------ . n+1, alternately from{x;} and {x{} so
that xe(x,{x€+-¢x, min (b, x,+1/n) and have
lt6, ) ~£G)12 52 for k=12,

Now let xVe¢ (f: a,b)=C. then for partition
X,4y of (a,b), we have

Zk_lﬂ( )Szx-1¢k(|f(xk+1) 10 1)
SICZy, X iﬂfxé

=3Cnk(4L)
by lemma 5 and Jensen's inequality, so that

(X1, Xa, -+,

KL zk_1¢k( Ay <3c1(-d)

letting n go to infinity we contradict the fact
Jm nZk..lﬂ(——)%O so that hm f(x)—hfx;“
f(x) must holds.

The case for left limits is handled in a similar
fashion.

Let us consider k Vo (Cf) as a function of
variable C. Since @={¢ ) is a sequence of
convex functions, we have ¢ (Cx)=Cg, (x)
for 0SCS). let Ve (f){ and let KC=1.
Then Ve (Cf)SCirVe(f)—0 as C—0. With
this in mind, we define a norm as follows;
let XPBV,={f€XPBV : f(a) =0},

For felC@BV,, let Bfll =111y e=inf (k)0:

xVo (£/K)S1).

LEMMA 7. (1) «Ve (t/RfB)=1
(2 If 1f1<1, then Vo (£} Nfl
Proof. (1) Let k)NfN,
prepartition {I'} of (a,b)
S (EI/MED) _ T4 A1/
R,/ (b-a)) Zx(\1 1/ (ba))
= xVe (£/k)

then for any
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Taking supremum over all prepartitions [In}
of (ab),
xVe(f/ M) s1

(2) For any prepartition {[} of (a,b]. if
Nfn=i,

UMD £8,E0/ONN)
S/ ey — ¥ VST, 17 a)
SNty

By using this Lemma, we have the
following result with the simiar proof of @BV,
(Schramm, 1985).

THEOREM 8.
Benach space

(XPBV,, Il -1) is a

The space K(PBV is a Banach space with
norm
Iflye =If@I+1f-1f(a) §.

THEORM 9. Suppose that @,={g, ). @,=
{#,)) and Dy={g,)} satisfy ¢, (x) ¢,"'(X)S
kég " (x) for all n. Then for all f€X@P BV,
and g€XP,BV, fgelKP,BV, and

Ifglces =2klfljcm leglye:

Proof. given any [ C(a,b), either

#, (LAY D S¢,, (180D 1) or ¢, (I£U) D¢,
(e It ¢m(lf(l )I)S¢2n(|8(l )I) then

we have the following inequality
1£(1,) g1 /k|
= 1828 (110 D esk e (10 D)
(B (85 (1800 1854 (85, (18T 1)
{1 kepzk (B (12(AI 1)
=gl (B, (1201 1))
Thus. ¢4, (I£0,)(1,)1/0)Se, (1g()1)
It ¢,(£a)1>8,, (g )1). then a similar
argument shows that
$, (£ /D) =g (1£0)1)
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Therefore we have
Yéan (1) (L) 1 /K)/ k(1,1 /b-a)
B8, AN D/ EX (L, /b-a))
+ (L ey, (18I 1)/ Xk (11,1 /b-a))
Thus, fge€eliK @,BV :

Let €)0. Without loss of generality, assume
Il o1=181, 92=1 By the convexity of
$y We have

T, (I£0)80,) 1/2k(1+))/SK(L | /b—a)

=+Z¢, ((IEA)1/1+e)/e()|/1+e)/k/EK
(I | /b—a)

S+3¢,(160,)1/1+€)/ KA1 | /b—2)

S++4=1
Thus KV o,(fg/2k(1+€))=1, ligl wes =2
k(1+¢€)* and the theorem follows by letting
€e~—0.

€1
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