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1. Introduction

The operator equation Tx=y where T is a
mapping some space into another has a solution if
and only if y is in the range of T. This embodies
the notion of a solution in the traditional sense: it
is an ideal situation. On the other hand. one may
look at the problem from a different angle.

In this paper we introduce the weighted general-
ized inverse of a linear operator in Hilbert space
and we investigate the solutions of constrained
minimization problem.

Let X and Y be (real or complex) Hilbert
spaces and let A:X—Y be a bounded linear
operator. We denote the range of A by RA). the
null space of A by N(A). and the adjoint of A by
A*. For any subspace S of a Hilbert space H, we
denote by S*
and the closure of S by S. Then we have the
following orthogonal decompositions of X and Y
[Groetsch(1977)] : )

X=N(A)®N(A) = NAYBRAT)

Y=NA*)®N(A*)" =NA*)DR(A)

The closed range theorem holds:

R(A) is closed in Y if and oply if R(A™) is

the orthogonal complement of S

@R BT

t

1]
Oh

r

>
kJ

8

closed in X. Consider an operator equation of the
first kind:
(1.1) Ax=y, xeX, yeY.

Definition 1.1. For a given ye Y, an element u
€X is called a least squares solution of the
operator equation if and only if 1 Au—y Il <l
Ax—ylifor all xeX.

Definition 1.2. An element v is called a least
squares solution of minimal norm of (1.1) if and
only if v is a least squares solution of (1.1) and
IIvit < uli for all least squares solutions u of (1.1)

A least squares solution of minimal norm is also
called a best approximate solution or a pseudo-
solution. For each ye R(AYDR(A)", the set of
least squares solutions is non-empty. closed, and
convex. Hence there is a unique minimal norm
solution.

Definition 1.3. Let A be a bounded linear oper-
ator from X into Y. The generalized inverse.
denoted by A*.is a linear operator from the subs-
pace R(AYER(A)" into X, defined by A* y=v
where v is the least squares solution of minimal
norm of the equation Ax=y.

Definition 1.4. The operator equation (1.1) is
said to be well-posed (relative to the spaces X
and Y) if for each yeY, (1.1) has a unique best
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approximate solution which depends continuously
nn Y: otherwise the equation 1s- said to be ill-
posed.

Note: when A is a linear operator with inverse.
then A*=A"' and the least squares solution of

minimal norm coincides with the exact solution.

Theorem 15. Let A:X — Y be a bounded
linear operator. Then the following statements are
equivalent :

(a) The operator equation (1.1) is well—posed.

(b) A has a closed range in Y.

() A* is a bounded linear aperator on Y into X.

Proof) (b} ¢ (c}: The proof is in the Groetsch
[1977]. (a) & (b): If A has a closed range, then Y
=R(AYPR(A)"=D(A"), where D(A*) is the do-
main of A"

Thus we know that (a). (b). (c) are equivalent.

Remarks. (1) According to theorem 1.5, il the
range of A is closed, then the operator equation is
well-posed and A* is defined on all of Y. since
R(A)=R(A). If R(A) is not closed. then the oper-
ator equation (1.1) is ill-posed and A* is an
unbounded densely defined operator.

(2) For ye D(A™), A*ye N(A)“ and the set of
all least squares solutions S is a nonempty clo
sed convex set:

S=1ju: u=A%y+v for veN(A)

{3) Thus. for y € D{(A™"). the least squares solu-
tion of minimal norm 1 of the operator equation

(1.1) is the least squares solution which lies in

N(A}Y™.

2. Existence and Uniqueness of the
solution of the problem

Let L:T — Z be a bounded linear operator.

where Z is a Hilbert space. We assume that the
range R(L) of L is closed in Z.but the range R(A)
of A is not necessarily closed in Y. We consider
Let S,=x

€ X x 1s a least squares solution of Lx=z. z € Z|

the following minimization problem :

Then the problem is to find weS, such that

(2.1) TAw—y I <l Ax—y ¢ for all xe S,

In this section we state the conditions under
which the solution of the problem (2.1) exists and
ueS, u=L"z+v for

some v e N(A). the constrained minimization pro-

is unique. Since for any

blem (2.1) is equivalent to

inf Il Ax—y i1 : xeS,}
=inf] AL z+x1)-y Il : x, € N(L)}{
=inf jlu—y 1l : ueAS,].

Note that AS, is a translate of the subspace
AN(L). Thus the problem has a solution for every
y —A(L"z)e AN(L) if and only if AN(L) is
closed. and the solution is unique if and only if
N(ANNL)= 0.

Throughout this paper. we assume that N(A)
N(L)=10] and AN(L) is closed. i.e. that the con.
strained minimization problem (1.1) has a solution
for each y—A(L*Z)e D(A])

unique.

and the solution is

Proposition 2.1 Suppose that T:X — Y is a
bounded linear operator and let P be the projec-
tion of Y onto R(T). then the following conditions
on ueX are equivalent:

(a) Tu=Pb.

() WTu-bi<HTx—bn for all xeX.
{¢) T*Tu=T*b. -
Proof) See Groetsch (1977).

We define a new inner product in X:
(2.2) [uv]=<AuAv)y+ Lulvy, for uveX

Let M= |xeX: A*Ax—A*yeN(L)"|.

Then the following ‘proposition is an immediate
consequence of the definition of [-..] and the
assumption that N(A)[IN(L)= {0!.

Proposition 2.2 (a) The equation (2.2) defines
an inner product in X.

b} M is a closed subspace of X and is the
orthogonal complement of N(L) with respect to
the new inner product. ie., X=N(L)#, M.

Proof) ia) It is easy and omitted.
(b} For every x € M there is a sequence (x,) in
M such that lim x,=x. Hence Ax, — Ax since A

1s a bounded linear operator.
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Thus. for all ue N(L),
and only if Iim [Au. A*Ax,~A*y]=
A*Ax—A*ye N(L)*
Since x € M was arbitrary. M is closed and so

X=N(L)*, M.

[u. A*Ax,—A*y]=0 if
[Au. Ax-y)
=0 Namely.

Theorem 2. 3 An element we X is a solution to
the problem (1.1) if and only if A*Aw_A*ye
N(Ly'and L*L, ~=L"*2.

Proof) By proposition 2.1, weS,= !xe X: x is
a least squares solution of Lx=z. zeZ| if and
only if L*Lw=L*;.

Let weS,=|L*z45s: seN(L)} such that
I Aw—y It <l Ax—y Il for all xe8§,
Then # A(L*z+s)—y Il < AL Yz x)-v i for all x

€ N(L). where w=L"*z+s.

Since Y=R(A, AIVER(AL)' where A denote the
restriction of A onto N(L ). As—ly—A(L *z)e R(A[)*

Thus. for all x e N(L). (Ax. As—Jy—A(L *2)} )=0 if
and only if (x. A*As—A* y—A(L *2))=0 for all x
€ N(L). Hence A*Aw-A*Ave N(L)*

By this theorem. the problem of constrained
mimmization (2.1) is equivalent to finding an
element weM such that L*Lw=L*; Thus the

solution w is the least squares solution of X, —

minimal norm of the equation (1.1).

3. Regularization. Existence and Un-
iqueness of the Regularized Solu-
tion.

When the range of A is closed. the problem
(2.1) 1s well-posed. Hence our interest is in the

case that the range of A is not closed and
therefore the problem is ill—posed.

Instead of solving this ill-posed problem direct-
ly we will regularize it by a family of stable
minimization problems.

Let W be the product space of Y and Z with
the usual inner product: W=YxZ

Ay z0) (yozol o= Vv y + (zy.z2),
for yiv.eY and z,z.€2Z.

We drop the subscripts X. Y and Z for the inner
product and norms whenever the meaning is clear

from the context

For @0, let C, be a linear operator from X
into W defined by C,x=(Ax. o/ 2Lx) for xeX

Lemma 3.1 For @30, the range R(Ca) of Ca
is closed if R(L) and A(N(L)) are closed.
Proof) See to Song (1978).

Corollary 3.2 Suppose that R(L) and A(NLY

are closed. Suppose that N(A)NIN( (L)y=10}. Let b
=(y.0) in W. Then. for e>0. the operator C ,x=b
is well-posed.

Proof) See to Song(1978).

We denote by U, the unigue least squares
solution of minimal norm of the equatmn C.x=b
for each «30. That is. Uo=C, x=h.

From the definition of C. and inner
W.
C.x—b=(Ax.
and | C,x=b?
=(C.x=b. C,x-b>

product of

V@ Lx)—(v.0)=(Ax- -y.

Ve Lx)

=(Ax-y. Ax-y>+ a(Lx. Ly
=lAx-yl"+a i Lxy*
Let us write J,(x)= | Ax=~y il "+ ailLxy~
Theorem 3.3 Let a)0. An element X, in X
minimizes the quadratic functional Jatx) if and

only if (A*A+aL"L)x,,=A*y.
Proof)

quadratic {unctional Ja
Ja(x)=2(A*Ax-A*y)

A+al*L)x,=A*y

An element x, in X minimizes the
(x) if and only if

+2(L*Lx,)=0. ie. (A*

We can approximate least squares solutions by
applying the steepest descent method.
The method of steepest descent for minimizing J,
(x) is given by x,,,=x,— @ ,r,. where r,=C*C,
x,~C*b and

e - Nmi®
tonCn,

The sequence generated by steepest descent method

converges to an element ueS, = fz: i) C,x=b
T=nCaz—bu{. Ix,0 converges to u, if and
only if x,€R(C¥) for any initial approximation

X € X.
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