-163 -

$Y = N(A^*) \oplus N(A^*)^{\perp} = N(A^*) \oplus \overline{R(A)}$ The closed range theorem holds:

 $X = N(A) \oplus N(A)^{+} = N(A) \oplus \overline{R(A^{*})}$

R(A) is closed in Y if and only if $R(A^*)$ is

[Groetsch(1977)]:

1. Introduction first kind: The operator equation Tx = y where T is a

mapping some space into another has a solution if and only if y is in the range of T. This embodies the notion of a solution in the traditional sense; it is an ideal situation. On the other hand, one may

In this paper we introduce the weighted generalized inverse of a linear operator in Hilbert space and we investigate the solutions of constrained

look at the problem from a different angle.

minimization problem. Let X and Y be (real or complex) Hilbert spaces and let $A: X \rightarrow Y$ be a bounded linear operator. We denote the range of A by R(A), the null space of A by N(A), and the adjoint of A by

A*. For any subspace S of a Hilbert space H, we

denote by S^+ the orthogonal complement of S

and the closure of S by S. Then we have the

following orthogonal decompositions of X and Y

Kim Do-hyun

III-posed 문제와 調整方法에 관한 소고

道

余

鉉

On Ill-posed problems and Regularization Methods

closed in X. Consider an operator equation of the

(1.1) Ax = y, $x \in X$, $y \in Y$.

Definition 1.1. For a given $y \in Y$, an element u εX is called a least squares solution of the operator equation if and only if || Au-y || < || $Ax-y \parallel for all x \in X$.

Definition 1.2. An element ν is called a least squares solution of minimal norm of (1.1) if and only if ν is a least squares solution of (1.1) and $\|v\| \in \|u\|$ for all least squares solutions u of (1.1)

A least squares solution of minimal norm is also called a best approximate solution or a pseudosolution. For each $y \in R(A) \oplus R(A)^{\perp}$, the set of least squares solutions is non-empty, closed, and convex. Hence there is a unique minimal norm solution.

Definition 1.3. Let A be a bounded linear operator from X into Y. The generalized inverse, denoted by A⁺, is a linear operator from the subspace $R(A) \oplus R(A)^+$ into X, defined by $A^+ y = v$ where ν is the least squares solution of minimal norm of the equation Ax = y.

Definition 1.4. The operator equation (1.1) is said to be well-posed (relative to the spaces X and Y) if for each $y \in Y$, (1.1) has a unique best

師範大學 專任講師

approximate solution which depends continuously on Y: otherwise the equation is said to be illposed.

Note: when A is a linear operator with inverse, then $A^+ = A^{-1}$ and the least squares solution of minimal norm coincides with the exact solution.

Theorem 1.5. Let $A: X \rightarrow Y$ be a bounded linear operator. Then the following statements are equivalent:

(a) The operator equation (1.1) is well-posed.(b) A has a closed range in Y.

(c) A^+ is a bounded linear operator on Y into X. Proof) (b) \Leftrightarrow (c): The proof is in the Groetsch [1977]. (a) \Leftrightarrow (b): If A has a closed range, then Y $= R(A) \oplus R(A)^+ = D(A^+)$, where $D(A^+)$ is the domain of A^+

Thus we know that (a). (b), (c) are equivalent.

Remarks. (1) According to theorem 1.5, if the range of A is closed, then the operator equation is well-posed and A^+ is defined on all of Y, since $R(A) = \overline{R(A)}$. If R(A) is not closed, then the operator equation (1.1) is ill-posed and A^+ is an unbounded densely defined operator.

(2) For $y \in D(A^+)$, $A^+y \in N(A)^+$ and the set of all least squares solutions S is a nonempty clo sed convex set:

 $S = |u: u = A^+y + v$ for $v \in N(A)|$

(3) Thus, for $y \in D(A^+)$, the least squares solution of minimal norm \mathfrak{a} of the operator equation (1.1) is the least squares solution which lies in $N(A)^+$.

2. Existence and Uniqueness of the solution of the problem

Let $L:T \rightarrow Z$ be a bounded linear operator, where Z is a Hilbert space. We assume that the range R(L) of L is closed in Z, but the range R(A) of A is not necessarily closed in Y. We consider the following minimization problem : Let $S_z = |x| \in X$: x is a least squares solution of $Lx=z, z \in Z$

Then the problem is to find $w \in S_2$, such that

(2.1) $\| A\mathbf{w} - \mathbf{y} \| \leq \| A\mathbf{x} - \mathbf{y} \|$ for all $\mathbf{x} \in S_z$.

In this section we state the conditions under which the solution of the problem (2.1) exists and is unique. Since for any $u \in S_z$, $u=L^+z+v$ for some $v \in N(A)$, the constrained minimization problem (2.1) is equivalent to

inf $||| Ax - y || : x \in S_z$

 $= \inf \{ \| A(L^+z + \mathbf{x}_1) - \mathbf{y} \| : \mathbf{x}_1 \in \mathbf{N}(L) \}$

 $= \inf \left\{ \|\mathbf{u} - \mathbf{y}\| : \|\mathbf{u} \in \mathbf{AS}_z \right\}.$

Note that AS_z is a translate of the subspace AN(L). Thus the problem has a solution for every $y - A(L^+z) \in AN(L)$ if and only if AN(L) is closed, and the solution is unique if and only if $N(A) \cap N(L) = |0|$.

Throughout this paper, we assume that $N(A) \cap N(L) = \{0\}$ and AN(L) is closed, i.e. that the constrained minimization problem (1.1) has a solution for each $y-A(L^+Z) \in D(A_L^+)$ and the solution is unique.

Proposition 2.1 Suppose that $T: X \rightarrow Y$ is a bounded linear operator and let P be the projection of Y onto $\overline{R(T)}$, then the following conditions on $u \in X$ are equivalent:

(b) $\||Tu - b|| \le \|Tx - b\|$ for all $x \in X$. (c) $T^*Tu = T^*b$. Proof) See Groetsch (1977).

(a) Tu = Pb,

We define a new inner product in X:

(2.2) $[\mathbf{u},\mathbf{v}] = \langle A\mathbf{u}, A\mathbf{v} \rangle_{Y} + \langle L\mathbf{u}, L\mathbf{v} \rangle_{z}$ for $\mathbf{u}, \mathbf{v} \in X$.

Let $M = \{x \in X : A^*Ax - A^*y \in N(L)^+\}$.

Then the following proposition is an immediate consequence of the definition of $[\cdot, \cdot]$ and the assumption that $N(A)\bigcap N(L) = |0|$.

Proposition 2.2 (a) The equation (2.2) defines an inner product in X.

(b) M is a closed subspace of X and is the orthogonal complement of N(L) with respect to the new inner product, i.e., $X = N(L) \oplus_{L} M$.

Proof) (a) It is easy and omitted.

(b) For every $\mathbf{x} \in \overline{M}$ there is a sequence (\mathbf{x}_n) in M such that $\lim \mathbf{x}_n = \mathbf{x}$. Hence $A\mathbf{x}_n \to A\mathbf{x}$ since A is a bounded linear operator.

Thus, for all $u \in N(L)$, $[u. A^*Ax_n - A^*y] = 0$ if and only if $\lim_{n \to \infty} [Au. A^*Ax_n - A^*y] = [Au. Ax-y]$ = 0 Namely, $A^*Ax - A^*y \in N(L)^+$

Since $\mathbf{x} \in \overline{M}$ was arbitrary, M is closed and so $X = N(L) \oplus_L M$,

Theorem 2. 3 An element $\mathbf{w} \in \mathbf{X}$ is a solution to the problem (1.1) if and only if $\mathbf{A}^* \mathbf{A} \mathbf{w} - \mathbf{A}^* \mathbf{y} \in$ $\mathbf{N}(\mathbf{L})^{\perp}$ and $\mathbf{L}^* \mathbf{L}_{\mathbf{w}} = \mathbf{L}^* \mathbf{z}$.

Proof) By proposition 2.1, $\mathbf{w} \in S_z = \{\mathbf{x} \in X : \mathbf{x} \text{ is } a \text{ least squares solution of } L\mathbf{x} = z, z \in Z\}$ if and only if $L^*L\mathbf{w} = L^*z$.

Let $\mathbf{w} \in S_z = |L^+ z + s : s \in N(L)|$ such that

 $\| A \mathbf{w} - \mathbf{y} \| \leq \| A \mathbf{x} - \mathbf{y} \| \text{ for all } \mathbf{x} \in S_z$

Then $||| A(L^+z+s)-y|| \le || A(L^+z+x)-y||$ for all x $\epsilon N(L)$, where $w=L^+z+s$.

Since $Y = \overline{R(A_L)} \oplus \overline{R(A_L)}^{*}$ where A_L denote the restriction of A onto N(L), $As = |y - A(L^+z)| \in \overline{R(A_L)}^{*}$ Thus, for all $x \in N(L)$. (Ax, $As = |y - A(L^+z)| = 0$ if and only if (x, $A^*As = A^* y = A(L^+z)| = 0$ for all $x \in N(L)$, Hence $A^*Aw = A^*Ay \in N(L)^{*}$

By this theorem, the problem of constrained minimization (2.1) is equivalent to finding an element $w \in M$ such that $L^*Lw = L^*z$. Thus the solution w is the least squares solution of X_{L^-} minimal norm of the equation (1.1).

3. Regularization. Existence and Uniqueness of the Regularized Solution.

When the range of A is closed, the problem (2.1) is well-posed. Hence our interest is in the case that the range of A is not closed and therefore the problem is ill-posed.

Instead of solving this ill-posed problem directly we will regularize it by a family of stable minimization problems.

Let W be the product space of Y and Z with the usual inner product: $W = Y \times Z$

 $\langle (\mathbf{y}_1, \mathbf{z}_1), (\mathbf{y}_2, \mathbf{z}_2) \rangle_{\mathbf{w}} = \langle \mathbf{y}_1, \mathbf{y}_2 \rangle_{Y} + \langle \mathbf{z}_1, \mathbf{z}_2 \rangle_{z}$ for $\mathbf{y}_1 \mathbf{y}_2 \mathbf{v}_1 \in Y$ and $\mathbf{z}_1 \mathbf{z}_2 \in Z$

for $y_1, y_2 \in Y$ and $z_1, z_2 \in Z$.

We drop the subscripts X. Y and Z for the inner product and norms whenever the meaning is clear from the context. For $\alpha > 0$, let C_{α} be a linear operator from X into W defined by $C_{\alpha} x = (Ax, \sqrt{\alpha} Lx)$ for $x \in X$.

Lemma 3.1 For $\alpha >0$, the range $R(C \alpha)$ of $C \alpha$ is closed if R(L) and A(N(L)) are closed. Proof) See to Song (1978).

Corollary 3.2 Suppose that R(L) and A(N(L))are closed. Suppose that $N(A) \cap N(L) = |0|$. Let b =(y,0) in W. Then, for $\alpha > 0$, the operator $C_{\alpha} x = b$ is well-posed.

Proof) See to Song(1978).

We denote by U_{α} the unique least squares solution of minimal norm of the equation $C_{\alpha}x=b$ for each $\alpha > 0$. That is, $U_{\alpha} = C_{\alpha}^{-1}x = b$.

From the definition of C_{σ} and inner product of W_{τ}

 $C_{\alpha} \mathbf{x} - \mathbf{b} = (\mathbf{A}\mathbf{x}, \sqrt{\alpha} \quad \mathbf{L}\mathbf{x}) - (\mathbf{y}, 0) = (\mathbf{A}\mathbf{x} - \mathbf{y}, \sqrt{\alpha} \quad \mathbf{L}\mathbf{x})$ and $\|\|C_{\alpha}\mathbf{x} - \mathbf{b}\|\|^2$ $= \langle C_{\alpha}\mathbf{x} - \mathbf{b}, C_{\alpha}\mathbf{x} - \mathbf{b} \rangle$ $= \langle \mathbf{A}\mathbf{x} - \mathbf{y}, \quad \mathbf{A}\mathbf{x} - \mathbf{y} \rangle + \alpha \langle \mathbf{L}\mathbf{x}, \quad \mathbf{L}\mathbf{x} \rangle$ $= \|\|\mathbf{A}\mathbf{x} - \mathbf{y}\|\|^2 + \alpha \|\|\mathbf{L}\mathbf{x}\|\|^2$ Let us write $\|\mathbf{J}_{\alpha}(\mathbf{x})\| = \|\|\mathbf{A}\mathbf{x} - \mathbf{y}\|\|^2 + \alpha \|\|\mathbf{L}\mathbf{x}\|\|^2$

Theorem 3.3 Let $\alpha > 0$. An element \mathbf{x}_{σ} in X minimizes the quadratic functional $J_{\alpha}(\mathbf{x})$ if and only if $(A^*A + \alpha L^*L)\mathbf{x}_{\alpha} = A^*\mathbf{y}$.

Proof) An element \mathbf{x}_{σ} in X minimizes the quadratic functional $J_{\sigma}(\mathbf{x})$ if and only if

 $J_{\alpha}(x) = 2(A^*Ax - A^*y) + 2(L^*Lx_{\alpha}) = 0$, i.e., $(A^*A + \alpha L^*L)x_{\alpha} = A^*y$.

We can approximate least squares solutions by applying the steepest descent method.

The method of steepest descent for minimizing J_{α} (x) is given by $x_{n+1} = x_n - \alpha_n r_n$, where $r_n = C_{\alpha}^* C_{\alpha}$ $x_n - C^* b$ and

$$\alpha_{n} = \frac{\parallel \mathbf{r}_{n} \parallel^{2}}{\parallel \mathbf{C}_{a} \mathbf{r}_{n} \parallel^{2}}.$$

The sequence generated by steepest descent method converges to an element $u \in S_{\alpha} = \{z : ini \parallel C_{\alpha} x - b \parallel \| = \| C_{\alpha} z - b \| \|$. $\|x_n\|$ converges to u_{α} if and only if $x_0 \in R(C_{\alpha}^*)$ for any initial approximation $x_0 \in X$. 4 Cheju National University Journal Vol. 22 (1986)

Literature cited

- Groetsch, C. W., 1977. Generalized inverses of linear operators, p. 113~118. Dekker, New York.
- Groetsch, C. W., 1980. Elements of applicable functional analysis, p. 109~120. Dekker, New York.
- Kreyszig, E., 1978. Introductory functional analysis with application, p. John Wiley and

Sons, New York.

- Nashed, M. Z., 1976. Generalized inverses and applications. p. 225~243.
- Song, M. S., 1978. Regularization Projection methods and finite element approximations for ill posed linear operator equations, Ph. D. Dissertation, University of Michigan, p. 4~17.

국 문 초 록

본 논문에서는 Hilbert 공간상에서 제한된 선형연산자의 minimization 문제를 조사하는 과정에서 그 연산 자가 ill-posed인 경우 해의 존재성을 논하였다.