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Summary

In this note, we generalize the definition of the Riemann-Stieltjes integral in [6] and find

the some properties using this definition. And also, we investigate the structure of the family of the (K,u)-pure

sets (resp. K-pure) of X where (X,Z,u) is a o-finite measure space, and we can have the Decomposition Theorem

from it.

1. The Riemann-Stieltjes Integral

The generalized Remann-Stieltjes integral is based
on a definition of the Riemann-Stieltjes integral
which depends very explicitly on the order structure
of the real line. Accordingly, we begin by discussing
integration of the real valued function on intervals.

Definition 1.1. Let {ab] be given interval. And let
f and @ de a bounded real valued and monotonic
function on [ab] respectively. For each partition
s Xp ) of [a,b] witha=x, <x, <...
<xp =b, Let &a, = a(x)) — a(x;;). Put

P={Xo,xl,...

a7 a : ¥
U, f,a) z Ml Aai z m; Aai
L(P, f, l!) z mI Aai z Mi Aai

where the notation a:# and a:V denotes the mono-
tonically increasing and the monotonically decreasing
function respectively, and

M;

m;

sup [f(x) : xj-; < x < Xi ]
inf [f(x):xj., <x<Xi].

And we define

B .
1) fa f da = l;fU(P, f, a)
(2 _[_‘; f da = supL(P,f,0).

If the left members of (1) and (2) are equal, we
denote their common value by

(3 [3fda

or sometimes by

@ f b f(x) da(x).

The is the generalized Riemann-sticltjes integral of
f with respect to a, over {a,b]. If (3) exists, then we
say that f is integrable with respect a, and write
€ R(a). Obviously, the Riemann-Sticltjes integral is
a special case of the generalized Riemann-Sticltjes
integral since a: 7.

In this paper, we will show that the genetalized
Riemann-Sticltjes intcgrals are valid where the
Riemann-Sticltjes integrals are. It is sufficient to
show the case a:\ on [a,b].

Proposition 1.2. If P* is a refinement of P, that is
P*DP, and a:\ on [a,b], then
(5) L(P,f,a) < L(P*,f,a)
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and
(6) U(P*,f,a) < U, 1,a).

Proof. To prove (6), suppose that P* =PuU [x*] is
a partition of [a,b] with 2= x,<x; <. .. <x; |<x*<
x;<...<xq =b. Put

inf [f(x) : xj., < x < x*]
inf [f(x) : x* € x < xj}.

wy

W

Then m; < wy, m; < w, where m; =inf [f(x):xi-1 <x
< x;]. Hence

U(P, f,a) — U(P*, f, a)

= m; (a(xi) — a(xiy )) — (wi (@(x*) — a(xi-, ))
+ws (@(xi) — a(x*))

= (mj — w1 ) (a(x*) — a(xi-, )) + (mj — w;)

(a(xj) — a(x*)) > 0.

If P* contains k points more than P, we repeat this
reasoning k times, and arrive at (6).

The proof of (5) is analogous.

Definition 1.3. Let J be a step function defined by

(x <0)

0
Jx) “{-1 (x >0).

Proposition 1.4. If a<s<b, f is bounded on [a,b], f
is continuous at s, and a(x) = J(x -2), then

(7) 2 fda = -f(s).

Proof.Let P = {x,, x;, X2, X3 } be a partition of
[a,b] with a=x,<x; =5s<x,<x; =b. Then U(P,{,a)
= -m; and L(P,f,a) =M, .
so M; and m, converge to f(s) as x; = s. Hence we
have (7).

Proposition 1.5. Suppose ¢p=0forn=1,2,3,..,

Since f is continuous at s,

n)‘:l c,, converges, {s, } is a sequence of distinct points

in (a,b), and
a(x) = X cn J(x-~sn).

Let f be continuous on [a,b], then
®
b =% cuf
fa f da n}ilcn (¢n)

Proof.a(x) converges for every x since Zc,, conver-
ges. And a:V with a(a) = 0 and a(b) = —F . For

every €>0, there exists N>0 such that % cp<e

n=N+]

since a converges. Put
N o
@0 = 2 cnJ(x-sn) erx) = £ cnJ(x-sn).

Then

J2 fde = Z e fb f(x) djx-sn)

__ & . b
= _nEI ¢n f(sn), by Proposition 1.5, |fa fdaj|

Hence
b =5
2 fde =% en f(sn)l?lfg fdaz|< M-e

<M la; (b) —; (2) | <M € where M = sup f(x).

since @ = a; +a;. If we let N - o, we obtain (8).
Remark 1.6 The integrability of the real valued

function with respect to the monotonic function

whether a:7 or a:V is invariant, but the value of the

integral is not.

2. The Decomposition Theorem

Here we use the concept of pure set by one defined
in terms of convex cones in Banach spaces. And we
will need to consider sets which are pure for a given
B-valued measured relative to a given positive mea-
sure, this concept being defined in terms of general
convex sets in Banch spaces.

Definition 2.1. Let (X,Z,u) be a o-finite measure
space, and let m be a B-valued measure on T. IfK is
a closed convex cone in B (with vertex 0), then a
measurable set E is called K-pure for m if m(F) € K
forall F € E. If m is pcontinuous, that is, m(E)=0
whenever u(E) = 0, E€ Z,and if K is any closed con-
vex subset of B, then a measurable set E will be called
K-pure for m relative to g, or (K,un)-pure, if AE(m)SK

where

= (m(F) .
Ag(m) {:’gF; : FEX, FCE, o<u(F)}
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is the average range of m on E.

This is a slightly short proof of Proposition 2.2 of
[4].

Proposition 2.2. Any countable union of (K,u)-
pure sets is a (K,u)-pure set.

Proof.Let E = U2, E;where every E, is (K,u)-pure

and pairwise disjoint. Since m(FﬁE )/u(FnE) €K

i whcrc F S E and o < p(F) < oo, the convex hull of
“Kis the set

Ag(m) = {%‘.((% ¢ FCE, 0<p(F)<ee}

since

m(F) _ . n  m(FNEj) u(FnE;)

©(F) i=]

#(FNE;)  pu(F)

Since K is convex and closed, m(F)/u(F) € K, that is,
Eis (K,u)-pure.

Since m(F) = £ 7 m(FNE,) where m(FNE,) € K
for every i and K is closed and convex, so any count-
able union of K-pure sets is a K-pure set.

Remark 2.3.1t is easy to say that the superset of
not (K,u)-pure set is not (K,u)-pure. The comple-
emnt of (K,u)-pure set is not (K,u)-pure if there
Thus the

family of (K,u)-pure sets of X is not a o-algebra. We

exists some set which is not (K,u)-pure.

can say about the family of K-pure sets of X similarly.

Definition 2.4. Let f be a measurable function, and
let E € 2. Then the essential range of f restricted to
E, crE(f), is defined to be the set of those b € B such
that for every & > o the measure of { x€E: Ii(x) — bl
< &} is strictly positive.

If DCB, then cI[C.H.D] will denote the closed
convex hull of the set D. If is an integrable function,
then the indefinite integral of f, m, is the B-valued
measure defined by

m(E) ='JE f du, Eex

Then, we have
Proposition 2.5. If f is an integrable function, and
if EEZ is such that 0<p(E)<o, then

Ag(m) S ol [C.H. (erg(f))]. (CL. [4])

Here we can obtain the relation between the (K,u)-
pure sets and er(f). This result gives some motiva-
tion for the proof of the Decomposition Theorem.

Proposition 2.6. Let f be an integrable function,
and let K be a closed convex subset of B. Then EEZ
is (K,p)-pure for m if and only if erg(f)SK.

In the proof of this Proposition, the Proposition
2.5 does an important role. In fact

m(F) / u(F) € {C.H. (erg(f)}

where FCE and 0<p(F)<oo.

Here we can have the Decomposition Theorem.

Theorem 2.7. (Decompositin Theorem). Let
(X,Z,u) be a o-finite measure space and let KE (m}), the
closure of the average range of m on EEZ, be com-
Let (U,) be a finite
collection of open convex subsets of B which covers
Ap(m) for 1<i<n. Then there exists a finite collec-
tion {Ei}! of measurable sets satisfying the condi-
tion E=u .1 E, and E, is (U, ,u)-pure for 1<i<n.

Proof. Suppose that u(E) < oo, Let

pact where m is g-continuous.

a; = sup {u(F) : FCE, F is (U,, u)-pure}

for each i, 1<i€n. Let E; be a sequence of (U,,u)-
pure subsets of E such that ,;l{!}_[l(Ei) =0and E =
uj_"l Eﬁ.
a3y Let F=E-U1 E. Suppose that u(F)>0 and let
b be any extreme point of cl{C.H. (Ag)]. Since
beAL, l:oEUj for some j, that is, B(b, B)CUj. Then
there is a F'SF such that 4(F')>0 and F is (b,8)-pure,
the closed ball of radius & at the center b€B. Hence
Fis (I_Jj,n)-purc and F'nEj = ¢ since F'QF. This con-
tradicts l(E,) = a,. Thus u(F) = 0. So there exists {Est
of measurable sets with E = U2, E, and E, is (On)-
pure for 1<i<n.

If u(E) = oo, then E = Ve F; where 1(F )<ee for
each i, since p is o-finite. We can choose Eﬂ with E =

Then E; is a (U,u)-pure set and u(E) =

i-lEi for every j and E, is (O,u)-pure for each i,
IG<n. Then E, is (Ui,p)-pure for each i and E =
v E,.
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