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Summary

The purpose of the present paper is to find that the upper integral in Daniell integration having the follow-

ing properties; L* = {fi(If|} < =} is complete and 1 is continuous. Moreover, monotone convergence theorem

and Fatou’s lemma in L* hold.

1. Introduction

The approach to the Lebesgue-type integration is
a base on the theory of measure. In some parts of
analysis, the attention is focused much more on
integrals than on measure. In the meantime, a novel
approach to integration theory had been suggested
in 1918 by P.]. Daniell. In brief, his idea was to treat
an integral as a type of linear functional. Daniell’s
works was largely ncgelected for some twenty years,
at the end of which period interest was revived by
Bourbaki, presumable wten plans were being laid for
the relevant section of his future work in this field.

2. Preliminary Results

In the present section, for our further discussions,
results obtained in our previous paper Ryu KS.
August, 1979 will be introduced without proof.

The following notations will be used throughout
the present paper:

X is a compact Hausdorff topological space;

L is the set of all real-valued continuous functions

on X;

I is a positive linear functional on L;

L, is the set of all extended real-valued functions
on X cach of which is a limit of a monotone increas-
ing sequence of functionsin L;

For an arbitrary function f in L, we define I (f)
by setting I (f) = lim I(f,) where f  in L and ftf;

For an arbitrary fuction f on X we define the
upper integral I by setting {f)= inf{L, ,(g) | g » fand
gin L,}. We define the lower integral I(f) = - I(-f);

L, is the set of all extended real-valued functions
on X each of which satisfied I(f) =I(f)and I(f)<~;

L* is the set of all extended real-valued functions
on X cach of which satisfied I(}f]) < oo.

Using the above concepts, we obtain the following
properties.

Proposition 2.1.

(1) If fis in L, then L (f) = I(f).

(2) If a, b be nonnegative real numbers and let f, g
bein L, I, (af + bg) = al (f) + b, (g).

(3) 1,(0) =O.

(4)lf fandgarein L, and O < f< g, then O <
1,0 <1,g)
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Proposition 2.2 For all fg in RX, the following
statements hold.

(1) KO <I().

(2) I(€ +g) <I(f) + I(g).

(3) f O<f<gthen OKI(f) <I(g).

(4) If r is a nonnegative real number then I(rf) =
f(f).

Proposition 2.3. L, is a lattice.

Proposition 2.4. L* is a linear-lattice.

Proposition 2.5. L, is a subset of L*.

Proposition 2.6. For all f in L*, |I(f)| < I(Ifl).

3. Continuity and Completeness

The purpose of this section is to find that I is con-
tinuous and that L* is complete. We begin by establi-
shing some lemmas.

Lemma 3.1. For all f and g in L*, n(|f|)=I(f)is a
seminorm on L*,

Proof) For any f and g in L*, we have

n(f+g) = I(If+g)) <T(If1) + I(Igl) = n(f) + n(g)-

And for any f in L* and any real number r, we
have

n(rf) = I(Irfl) = Irl T(ifi) = Ir] n(f).

Hence, this lemma holds.

From the above lemma we know that L* is a
semimetric linear lattice with semimetric d(f,g) =
n(f - g).

Lemma 3.2. Let f and g be eclements of L*. Then
IT(H) - T(gl <T(f - g).

Consider the semimetric topology (L*, d) and
usual topology (R,U). Using the lemma 3.2, we have

Theorem 3.3. The upper integral I:(L*, d}«R,U)is

continuous.

Proof) For arbitrary positive real number €, there
exists € > 0 such that d(f,g) = n(f - g) = I(If - gl) <e
implies

iT(f) - I(g}l < I(f - g) <e. Hence, I is continuous.

Let us write f ~ g if and only if d (f,g) = 0. Itis
clear that this is an equivalence relation in L* which
partitions L* into equivalence classes, each class
consists of all functions which are equivalent to a

given one. If F and G are two equivalence classes,
choose f in F and g in G, and define d(F,G) =d(f.g),
then we obtain an quotient space L*/. and (L*/.,
d.) is a metric space. Hence we easily have the follow-
ing corollary.

Corollary 3.4 Let the projection p:L* - L*/_
be an identification. Then there exists a continuous

function h such that the diagram

L* L*/.

P

R

is commutative.

Furthermore, we have I(jfl) = d(£,0)=d (F,0) =
h(ip(f)1). Lastly, we show that

Theorem 3.5 (L*,d) is complete.

Proof) Let (f,) be a Cauchy sequence in L*. We
pick a subsequence (fmi) from it such that d(fmi, fmm)

<2i  Puttingf= fm; + (fmm -~ fmi) 4 wee  Then
(M) < f(lfmil) + T(|fmi‘H - fmyl) + e = r(lfmil)
+1 <oo,

Hence f € L* which implies that (L*,d) is complete.

By the above theorem, we directly have the follow-
ing corollary.

Corrollary 3.6 (L*/., d.) is complete, that is,
(L*/~, d,) is-a Branch space.

4. Monotone Convergence Theoream and Fatou’s
Lemma in L*

Onc of the most fundamental results concerning
Lebesgue-type integrals with respect to o-additive
measures now appears in the following disguise.

Theorem 4.1. Suppose f is the limit of a monotone
sequence (f) of functions in L*. Then I(f) =
tim 1(£,)

Proof) We casily obtain that I(f) > I(f, ) for each n.

Hence [(f) > lim I(£,).

In proving the reverse one may assume that f(fn) <
oo for each n.
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It will be shown that for any € > O one may choose
an increasing sequence g, from L, such that { <
gpand I (g)) <I(f ) +e.

If this be done, g = lim g will Lelong to L, with
f < g and will show that I (g) = lim I (g,) <I(f )
+e€.

Accordingly I(f) <I,(g) <lim I(f )+ e

Since € is arbitrarily small, the proof will be com-
plete.

To contruct the g, one begins by choosing h, in
L, with h > f and such that f(fn) < Iu(hn) <

T(fn) + €/2D, and then shows that the 8y = sup hp,
1<m<n

satisfy the demands.

Evidently, g, € L, and g, 2 . The final step is
to prove by induction on n that I (g,) < f(fn)
+e(l1-2M).

Now this is true forn = 1.

Assume it true forn = k. One has g, =lsup k'lin
<m<

= sup (g.hyy))

hy)>1.

Also inf (gy, hyyy) + sup (gy, hyyy) = gy + hyyy-
Using the proposition 2.1 and proposition 2.3,

we have
1

I{fy) + L(8s) < Ly(inf(g,hpyy) + I,(Sup(gy,
hy41)) = T(inf(gy,hyyy) + sup(gyhy 4q) =

(g thyay) = Ly@thyey) = 1,(8g) + Ly(hyey)-
So,by inductive hypothesis,

Ly(8+1) <Iylgy) + Lylhyay) - T(E) <L)

+ e (1- /2% + 16, ) + /251 T(h) = T(g,)

+e (1 -1/25%1) thatis,
Lg,) < i(fn) +é€ (1 - 1/2™) holds.

The proof ends by appeal to the mathematical
induction.

By the above theorem, ‘we obtain the fatou’s

lemma.

Corollary 4.2.Let (f ) be an arbitrary sequence in

L*. Then I(lim inf f,) <lim inf I(f ).

Proof) Consider the function F_ = inf f . Then
m ,om™n

lim inf f_is that limit of a monotone sequence
n>m
(Fpn)- Hence, by the above theorem,
I(lim inf f ) =lim I( inf f).
n>m n>m
Moreover inf f, < fm for any m, which implies
that

I( :r;fm f,) <I(f,) for any m.

Hence I( inf f ) < inf I(f), that is, this coroll-
n>m n>m

ary holds.

On the other hand, using the theorcam 4.1, we

have the following property.

Corollary 4.3. Let (f,) be a monotone increasing

sequence in L* which converges to a limit f in R,
Then f is in L* if and only if lim I¢f,)) <ee.

Proof) In any case f, <f for every n, if f € L* then
1(f,) <T(f), hence tim I(£,) <ee.

On the other hand,supposc that lim I(f, ) <eo. By
the theorem 4.1, I(f) = lim I(f) < oo, that is,
felL*
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