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1 Introduction. Let A be the C*-algebra

generated by a commuting, countable family of

bounded normal operators {A,} and the identity
operator 1 on a Hilbert space H.

B.R. Gelbaum [3] gave a simple proof of the
following theorem due to von Neumann: There is a
single Hermitian operator B on H such that the C*
-algebra B gencrated by B and I contains the C*-

algebra A [9,13].

The.e are at least three different proofs other .

than the von Neumann’s original proof, mainly
because there exist different formulations of the
spectral theorem. In this note, we shall use the
" «gpectral measure”. version of the spectral theorem.
We are motivated by a Halmos paper [7]. With
only a slight modification, his argument also can be
applied for the proof of the von Neumann theorem.
But there, he uses the “multiplication versicn” of

the spectral theorem.

2 The von Neumann Therorem.

Lemma 1. Let A be a Banach algebra. Then A
is separable if and only if it is generated dy a co-

untable family of elements.

Corollary 2. Let A be a C*-algebra generated by
acountable family {A,} of operators and theidentity

operator I on a Hilbert space H, then A is separable.

Lemma 3. If A isa Banach space, then the unit

ball of the porm dual of A, with respect to the
weak* topology, is a metric space if and only if 4

is a separable Banach space [3].

Lemma 4. Let A be a non-empty Hausdorff
Space. Then 4 is a compact metrizable space with
respect to the topology if and cnly if it is a cont-

inuous image of the Cantor set I [8],

Lemma 5. Let ¢ be a continuous function on
the Cantor set I" onto a non-empty compact metric
space A. Then there exists a Borel function ¢ cn 4
into I” such that gog=I,, the identity function on A.

Proof. If z € A, the compact set ¢ '(z) in I
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attains its minimum, say, xe57!(z). Define ¢(z) =x.
infg(z.),
whenever z,—z, by using the facts ¢(¢P(z,)) =2

Then it is easy to see that ¢(z)<<lim

and the continuity of ¢. Therefore ¢ is lower semi-
confinuous [2], i.e. ¢! (t,oo) is open for each
real t. Since ¢ is bounded, it is now clear that ¢
is uniformly approximated by step functions in

Borel set of A. Hence ¢ is also a Borel measurable

function on A into I

Lemma 6. Let I, A be topological spaces and
2., I their Borél o-fields respectively. Let ¢ be a

continuous function on I" onto A. Suppose there is

a Borel funtion on (4,Y) into (I, X,) such that
woh=1,4.
Suppose that {E(4): 6 ¢ X} is a bounded, vector

valued, additive set function on £. If we define
E(8))=E(p(81)), 6, ¢ X, then

(i) E; becomes a bounded, vector valued, additi-
‘ve set function on JY,, and

(ii) for each f eB(4,%) and

$r(fop) (t) dEE) =54 F(D)IE).

Proof. Let {f.} be Z-step functions such that
fw—f uniformly on 4.
Each f,, has the form

AX e X, where
6.!

& s,
n
di are disjoint sets of I such that |JJ;=4. Put
E=i
¢! (3;)=0;, i=1,2,...50,
“Then
. PR
{(/Ixxo.l hlo‘z lxza,')}
converges to fo¢ on I" uniformly.
Indeed, if
. P _
|(1lxal 23152 znla. fIA)[<e
for all 2 ¢ A, then

|y, Ak, *o+ 2ty —fop)(s)]

=[=flp(s)) ], o(s) € &, if, say, s ¢ 0, <a.
Hence fog ¢ B(I", Z,).

Under the circumstances,

LHE(3)) *A:E(8:) *--* LE(3:)—54 F(DIEQ)

and

LE() *HE(@) *-+ 1) -54(fop) (VAE:(s).

But Ey(0;) =E((0.)) =E(3,), since ;=9 (3;).

Hence

54 FQRQYAEA) =§r(fop) (s)dE,(s).
In this proof, we used the fact that if ¢ ¢ Xy,
then ¢(0) ¢ Z.

Indeed, for 0 e Xy, ¢ !(g) ¢ 2. But pof=1,4 so that
¢(0) = (pod) (97} (a)) =¢~'(a) ¢ Z.

The relation that ¢(o) =¢~!(o)also gives the fact

that 6 —E\(g) =E(p(a))=E(¢“(a)) is an addive

set function. Q.E.D.

Theorem 7. Let {A,}be a countable family of comm-~
uting normal operators on a Hilbert space. Then theré
is a single Hermitiaﬁ operator B and a sequence of a
continuos functions {g.} on the spectrum I” of B into
the complex plane such that A,=§, g.(t)dE(t),
{E1(Bi}: 81 ¢ 24}

where denotes

the ' spectral
measure on the Borel o-field £, in I, associated
with B.

Proof. We apply corolly 2, Lemmas 3-6 and the
general spectral theorem for a commutative C*-al-

gebra of operator [4]. Q.E.D.

Remark 1. The essential supremum norm as def-
ined in [5] is equivalent to the following more
intuitive definition.

Iifllm=i?>fn[M: Efted: |f()|>M}=03, where
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feB (A,X) and E is the spectral measure for the
commutative C*-algebra of operators with unit,

whose spectrum is 4.

Remark 2. Our proof is lengthier than that of

Gelbaum, but looks more illuminating in relation
with the general spectral theorem in the Dunford-

Schwartz book metioned above.

3. An extension of Weyl-von Neumann
Theorem.
Theorem 8. Let A be a Hermitian operator on
a Hilbert space H with dim H={,, then thereisa
compact operator C and an orthonormal basis for

H such that

-

Furthermore C can be chosen to be a Hilbert-
Schmit operator with arbitrary small Hilbert-Schmidt
norm [i.e. the sum of the squares of the absolute

values of the entries] [10].

Proof.

(IJIfeeH llell =land Il (A-A)ell <cllell ,then

where C is a Hilbert-Schmidt operator with Hilbert
Schmidt norm <y 3 e.

]ndeed, we write

Now &> || (A-ell *= 1t Xl 3ys,50
BCH2ns= Il X1l *ns+ I X* 1 *ue <2 €%
() If f ¢ H, ¢>0, then there is a finite ort-
honormal set {€;,e; €, *,€,} such that

J e<ey, €555, > and

(1) A= " 0

where C is a Hilbert-Schmidt operator with Hil-
bert-Schmidt norm<e.

To prove this, let e),€s, -+, €, be positive real

numbers such that

X ,'.'15.' > 21 Al and Z,-:l €?<82/2

|4—-¢!-—>| |e—eg—)| le—-g=—s]

— Y~ )Y
-HAl [
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Yi=[- 141 + I_Z'ls,-, — AN+ 2e).
i= i=
‘Then the spectrum

n
of A,e(A) Cc UY,.
i=1

Hgnce H=Z;* ®H;, H;=E(Y;Na(A))H, where

£ is the spectral measure associated with A. By
neglecting Yi’s for which Y;Ne(A)=@, we see
that thereexist e;eH;, lle; i =1, (necessarily ortho-
gonal) such that
fe<es, €2, 8>,

Furthermore, let ;¢ Y;No(A).
Then, since e;eE(Y;No(A))H, we have

I (A-250e: 11 < Nl (A-2:) [ H; it <
Now we write A in the form (1).
By part (1], we have

HCH 2ps<Imisy 267 <et,

(III] Finally, let ¢0. Let {fi,fzfs -} bea

spanning set for H. By part (II), there exist €,

€3, ---» €, (orthonormal) such that

€1, €z €,
\
2,
iz 0 0
A = ° + Gy,
0 A
0 A
\

where f1 ¢ {e5,ex,e,) and 1| Cy |l j5 {e*/a.

Again by applying part [II) to A,, there exist

€x+1, Cut2y ***s Batm (0.0.) such that

€;,€2:°€y €ut1; Cut2 Ca
24
A3 . 0 0 0
A= ° +C1+C’,
0 A
Aut1 0
Auts
0 ) i
0 .
Am
0
1] 0 A,

where fi, f2 €{€1,€2 1 €nCat1, Extts "3 Cu).

Continuing in this manner, we get an infinite

orthomormal set {e; e e;, -} which spans the
whole space H, since each f; belongs to
{e1,€z, €5 7).
If we let C=C;+Cy+Cs++-, then the series
converges in operator norm, since

BCU s (/) + (6% )+ (/a) +-- =67,

and A has the form

A = Az +C.

Remark. From our construction, {2, Az, 4g,--)

is contained in d(A4), so ¢(D)Ca(A4).

Theorem 9.

Let A be a normal operator on a

separable Hilbert space, dim H=},, then A=a
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diagonal opeator+a compact operator.” (1],

Proof. (7). By Theorem 7, there is a Hermitiam
operator B and a complex valued continuous function
gonthe spectrum I” of B such that A= {g{¢)dE (),
where {E;(5,):6,eX,} denotes the spectral measure
on the Borel o-field ¥, on I, -associated with B. The
Weyl-von Neumann (Theorem 8 above) says that

B=D+C, where D is a diagonal operator and C
is a compact operator.

Also the spectrum I'; of D is contained in the
spectrum [ of B.

By the Weierstrass approximation theorem, there
exists a sequence {p,)( )} of complex polynomials
in a single real variable xel” that convergesto g(-)
uniformly. Then also p,(:|I)—(-|I) uniformly.
By the Gelfand-Naimark theorem [4], we see that
Pe(B)Y—g(B) and p(D)—g(D) in the norm, where
&(B)=§rg(t)dE (1), by the
theorem, so that g(B)=A.

Gelfand-Naimark

And g(D) can be understood simply as a limit of

{2.(D)} which certainly converges, since it is a

Cauchy sequence, or g(D) =§r, g(t)dF(t), where F -

is the spectral measure associated with D. Put C,
=p.(B) —pa(D), then each (,‘,. is compact and {C,}
converges in the norm to an operator K, ‘which
is necessarily compact. We fix a basis of H that
makes D diagonal, then p,(D) are a]i
operators. If one computes the entries of the matrix
of g(D) with the aid of the fact that p,(D)—g(D)
in norm, we then easily see that g(D) is a diagonal
operator as well. But K=g(B)—g(D), so that
A=g(D)+K. ' Q.E.D.
Now let us put the diagonal operator g(D,);—' w.

Our next goal is to sharpen the aktove proof of

subalgebra of the Banach algebia A with

diagonal .

W and K so’
that (W) Ca(A) and I K|l arbitrary small

Halmos as follows: We can choose

Lemma 10. Let A be a commuiaiive Banach’
algebra with identity and x ¢ A, then o(x) = {¢(x):
pisa homomorphisfn of A onto the complex

plane}. [11]

Lemma 11. If B 1is a maximal commutative
identity,
and if x ¢ B then

a.(x)=05(x) (111

Proof. Note that A and B have the common
identity. Clearly 04(x)Cop(x). Now, if 2 € 64(x),
then there is y ¢ A such that (x-A)y=y(x-3)=1.

For all z eB, yz= yz(x-2)y=y(x-1) =zy. By ma-
ximality, y eB. Hence 1 ¢05(x), showing 65(x)Co
a(x). Q.E.D.

The following Theorem looks as a most natural
extension of the spectral mapping theorem for
polynomials [11].

Theorem 12. Let A be a Barach algebra with
identity and x,y ¢A. Suppose that there is a

sequence of polynomials p,(-) such that p.(x)—

‘yeA in norm. Then for each 2ed(x), the numerical

sequence {p.(2)} converges and a(y)= {#:p.()—U;
Zw(x?}.

Proof. If B is the maximal abelian subalgebra.
containing x, then it is also the maximal abelian
subalgellvra containing y. By the preceeding Lemma
11, we now may assume that A itself commutative.
Let » denote the Gelfand mapping of A onto the
algebra of ‘all’ continoous functions on X, where X

is the set.of all multiplicative linear functionals on

A onto the complex plane, equipped with the weak*
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topology (12]). Let 2sa(x).
Then we take ap e X such that ¢(x) =2, by Lemma
10. Note that A (p)=¢(x)=2, and
Hpu(X) =Y N =1l pulx) =Tl sup
Z(pu(&)—$) (P) ], for each p=X
=1pa(2) —y (p) |0, as n—oo

“Thus
22—y (P)=0(y)ea(y).

It follows that { p.(2)}converges and {:p,(2)— )
Ca(y).
The fact that a(y) C {4: p,(2)— M} is similarly pro-
ved, by noticing that a typical point of g(y) is also

-of the form ¢(y) (cf. Lemma 10 and 11). Q.E.D

The next is a desired improvement of Theorem 9,

Theorem 13. Let A be a normal operator on a
-separable Hilbert space, dim H= o, then A=D+

W, where D is a diagonal operator and W is a

compact operator such that
a(D) Ca(A), s(W) Ca(A)

It KNl is arbitrasry small. [1)

Proof. Let tleo (W) =0(g(D)).
By Therorem 12, and the proof of Theorem 9,
there is ea(D)Cr
such that
2D p, pu(2)—g(2)ea(g(B)) =a(A).
Again by Theorem 12, we see that
H=g(eo(A).
Hence
o(W)Ca(A).
Now by the proof of Theorem 8, | Cll‘ <ac
Hl gs) in the proof of Theorem 9, can be arbitrary
small.
A simple modification of the proof of Theorem 9

gives the conclusion. Q.E.D.
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