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Fuzzy Modeling and Control of Wheeled Mobile Robot
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ABSTRACT

In this paper, the control of the differential drive wheeled mobile robot (DDWMR) is studied. Because the
DDWMR have non-holonomic constraints, it cannot be stahilized by smooth feedback. The T-S fuzzy model
for the DDWMR is presented and a control algorithm is developed by well known PID control and LM

based regional pole-placement.
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I. INTRODUCTION

Various kinds of mobile robots have been
developed and recently, manv of scalars devote
their efforts on these areas. Among them, the
differential drive and the car like wheeled mobile
robot(WMR) are most widely used in their
application field. Since the WMR system is a
typical non-holonomic system except the omni-
directional types, the standard control laws must
be developed for systems with non-holonomic
constraints. Due to the fatal property that a WMR
with nonholonomic constraints cannot be stabilizes

by a smooth feedback, it is necessary to find more
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effective and advanced algorithms[1-3].

In paper, the control of the differential drive
wheeled mobile robot(DDWMR) is studied. Because
the DDWMR have non-holonomic constraints, it
cannot be stabilized by smooth feedback. The T-5
fuzzy model for the DDWMR is presented and a
control algorithm is developed by well known PID
control and 1.MI based regional pole-placement.

. Modeiing of Wheeled Mobile Robot

2.1. Dynamic Modeling of Wheeled Maobile Robot
(1, 4]

The structure of the mobile robot, considered in
this paper, is shown in Fig. 1. The relation bet-
ween the forward velocity and the wheel angular

velocity 1s described by
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where, v and @ are forward and rotation
velocities of the robot, respectively, and r is the
ratio of the wheel. And b is the displacement from
center robot to center of wheel. The kinetic

equation is
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Fig. 1. Structure of WMR

In order to derive the dynamic equations, we
now define some variables.
Ic : robot inertia except wheels and rotor
Iw : motor rotor inertia for wheels and wheel axis
Im : motor rotor inertia for wheels and wheel

diameter

m : mass of robot except wheels and motor rotor
me © mass of wheels and motor rotor

The dynamic equation of a of robot is described
bv[4,5]

M(@) g+ Vg, ¢)= E(g)r— AT(94A (3)

where, A is Lagrangy multiplier, 7 is the torque
of each wheels, and d is the displacement from the
center of mass to the center of rotation,

a=[x v 6, 8] and

_[ —sin® cos® _[n
Ala) [—cos@ —sin® cb Cb e [ ]'1 [m]
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~ m.cdsin®  mcdcos @ F+1, -
medsin®  — m.cdeos D - F+1.,
Zm(d(b. Zcos @ 00
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In order to eliminate the Lagrange multiplier, we

select the null space of A(g) as

70 y_[ cbcos@ cbsin®@ 1 0
51@ [cbcos@ cbsin® 0 1

then, equation (3) hecomes

ST(@M(a)(S(q) 8+ S(g) )+ ST (P Wa, @ =t (4)

Equation (4) is a tvpe of non-holonomic equa-
tion. This tvpe of system cannot be linearized by
using the state feedback.

We now present a LPD svstem model for the
mobile robot. Equation (4) becomes

M, Ml’] 6,11 Nu le] 6, 5)
[ ] [M’l M, 8, Ny Nxoj| 8,

where,

My=Mu=mcb+F+1,

M= M, =mdb — I

Ny = mcbd(c+ @), Ny=mocbd(c— @)
Noy=—mchd(c— @), Np=—m.cbd(c+ ®)
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In equation (5), the variable @ must be selec

ted as a parameter. Because of the term @2, the
dynamic equation is not linear with respect to the

parameter value @. After simple algebraic mani-
pulation, we can obtain the LPD system represen-
tation of mobile robot system[7]. Define the state
vanables, input and the output as

xléﬁl.xgéﬁg,né@l.né@g.
u=[ Tl] yz[ 91]
T2 ’ 63

then, the state space representation of mobile robot
is

) =Ax(D+ A D())x(H+ Ryl s
WD = Cx(f)

where,

001 0 00 0 0
oo o 1| 4_loo 0 0
A 00 ay ab A 00 a, ap|’

00 &) ak 00 ay an
0 0
B=0 0 :[0 01 0]
¢ by by’ ¢ 0001
by by
g = m cbd(2m b+ 1,
W Am O F+ 2mc b T, + 2R +
a(x)z:a(;l, 081:“(1?1, a-(l_»=—alf]
&= mcbd(20c* 6" + 1,5 @
U Am O P+ 2m BT+ 2T+ T
ap=ay, a)=—ay, an=—4da)
b _ meb+ E+ 1,
M T g B+ 2m B, + 2P + B
Ii+ L’b'.?
bll{(:b“: e

Amc PP+ 2mc* 6l + 211, + B

In the equation (6), controllability matrix [A,,
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Byl is controllable and [A;, By} is controllable

except when the variable @(H=0.

2.2. Takagi-Sugeno Fuzzy Model of wheeled
Mobile Robot

The fuzzyv model proposed by Tagaki and
Sugeno i1s described by IF-THEN rules which
represent local linear input-output relations of a
nonlinear svstem[8]. The main feature of a T-S
fuzzy model is to express the local dynamics of

each fuzzy rule by a linear systern model.

The i-th T-S fuzzy model is[8]
I 2(D=M; and . and 2,()= M,

N | X(O=Ax(D+Bu(t) _1 o5 ..
IHP'N{y(t)=Cx(1), =127 (D

The final outputs of the fuzzy systems are

inferred as follows:

,s; w,(2(D) (A, x(1) + B, u( 1)}

() =
= 3 h(D) Ax(D+ Bu(n)
3% wi(2(0) C )
Wy =+
Bt (8b)
= 2 hD)CaxlD)

Note that the elements of matrices Aq, B, and
C are constant and that the onlv matrix A,
depends on the value @(#. The fuzzification of
the DDWMR is performed on the matrix A,. The

fuzzy model for the DDWMR, described by the
equation (7), becomes
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If @(H=M
o [ HO=[Ay+ A D)+ Bore D)
THEN {y(t)=Cx(Jt), : ’
i=1,2.7 )

The final outputs of the fuzzy systems are

inferred as follows:

3wl f LA+ A XD + By D)

0= 3 w2(D)
= 2 hl2(DI [ Ag+ A 1K D + B D)
= Ay D+ By + 2 bl () Ax(D)
o = Cx() (10)

The equation (10) is a fuzzy state-space repre-
sentation of DDWMR.

1t Control of Mobile Robot

We are now state a controller structure presen—
ted in this paper, and a new control design algori-
thm for mobile robot.

3.1. Controlier Structure

The most important control strategy of physical
systems is reference tracking. To achieve this
ohjective, the control structure is shown in Fig. 2.
In Fig. 2, control parameters in the block are all
fuzzy controller. And it is shown in Fig. 2 that the
controller has two control parameters one of which
is state feedback and the other is control gain
with integrator. The input signal is described by

u() == Flax(n TG [edat] an

Fig. 2. Controller structure

where, F() is a fuzzy state feedback gain matrix
and K(y) is a fuzzv integrator gain matrix. In
order for obtain controller gains F(g) and K{(u),
it is needed to simplify control input or controller
structure. The new state x,., can be defined at

in the Fig. 1. Then the dynamic equation becomes

(9 ] [ A2 A (1) 0[ D
C

x,,*](f) 0 xp (D
B, 0 e
+[ 00] u(t)+[ 1] H D) {12:)
= x(t) 9
w)=[c 0] 21 (1) (12.b)

and, the control input is

W) = F(w) K(;:)][ i x.(f<)r>

(13)

It is known by the equation (13) that the control
input is state feedback for the system described by
the equation (12).

3.2. Regional Pole Placement
The LMI region is defined following definition[6].

Definition 1. LMI regions are convex subset D of
the complex plan characterized by

D={z2eC: L+Mz+M"2") (14)
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where M and L are fixed real matnices, and z and
z* are complex valued scalar and its complex
conjugate pair. The matrix valued function
fl D ={L+Mz+M"2") (19

is called the characteristic function of the region

D. We are now state a local pole placement. Let
M; bhe the fuzzy model obtained by substituting

the @ as i-th sample. And select a function.
#(p"" 1), a local convex function, then the
following theorem states the algorithm of obtaining

the controller gain matrix for M,

Theorem 1: For M,, the closed loop poles lie in
the LMI region D, described by equation (14),

where

L=LT=[A,1;] M=[m;l

1<j ksm’ 1</ ki+m

if and only if there exists a symmetric matrix .Y
satisfying following four inequalities.

[ X+ mpALX + m sA L <0

7
]l(+1,kt.~m

(16)
X>0

where A is

Al = Apt Z,l‘:AI(/‘l) + Br»Z#,F(ll) B[,Z,u,mm
-C 0

Proof) Proof of this theorem is simple extension
Chilali and Gahinet's work {6} (QED).

Theorem 1 states the local regional pole place-
ment of the M, Because the equation (16) is not

convex, we cannot obtain the controller gain ma-

trix. Define a matrix Y, : =F,; X, then conditions
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of local pole placement is summarized by Theorem
2.

Theorem 2. The closed loop poles lie in the LMI
region D if and only if there exists a symmetric

matrix X satisfving following inequalities.

1 g
X>0 a7
the i-th state-feedback gain matrix is
[F;, K]=Y.K ! (18)

Proof) The proof of this theorem is verv simple
extension of the results of Chilali and Gahinet's
work [6] (QED).

The theorem 1 and theorem 2 shows the local
regional pole-placement condition and the way of
finding local controller gains. The global pole-
placement condition and global controller gain can
be achieved by using approximated plant. In order
for global pole-placement, the control input, made

up of local controller gain. is selected by

Wl fy=— [Z."'( EIF()x( 0 + D, &K, (4) fe(t)dr]
(19)

By noting the equation (19), the controller gain
1s made up of local controller gains and which is
convex combination of local controller gains
hetween [(ij, D~(i-1], D]. The following theorem
states the global regional pole-placement.
Theorem 3: Assume that the plant model is
modeled by the equation (10) and local controller
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gains are obtained by the equation (18) for local
fuzzy model. Then the closed loop poles are lie in

the desired region.

Proof). The proof of this theorem is very simple
extension of the results of Chilali and Gahinet's
work (QED).

The theorem 3 states the global global-place-
ment condition and controller design procedure is
summarized as 1) sampling model 2) design local
controlier 3) combine it.

IV. SIMULATION

In simulation, the robot considered is MIROSOT
soccer robot, and detailed specifications are sum-
marized in the table 1. The mass of the robot is
0.0612 Kg m/sec: and the mass of wheels is 0.0051
kg m/seca. And other parametersused in this paper
were
b=3mm, c=7r/2b, d=10mm

The robot inertia except wheels and rotor is
0052 sec Kg om and motor rotor inertia for
wheels and wheel axis is 00176 2 sec Kg om.
These parameters were actually measured and
computed for MIROSOT robot designed Yujin
Robotics corp. In this paper, the maximum velocity
of the wheel was the maximum velocity of the
motor specification.

By using parameters described above, state spa-

ce matrices for the mobile robot are

00 1 0 00 0 0
A=|00 D 1 ~leo o 0

T loo 00816 00816 0 7' |00 0.03332, -0.0337
h O —0.0816 -0.0816 00 0.0333¢, —0.0333¢,

Table 1. The specifications of MIROSOT robot.

Size 70x70x70 mm
Wheel diameter 225 mm
Rpm 8000
Gear ratio 81
0 0 l
_ 0 0 _[00 10
B=| s om —10mssl <10 000 1l
-19.225% 25.0222

Membership functions of this paper are shown in
the Fig. 3. Fig. 4 and Fig. 5 are simulation results

for pulse reference input.

Fig. 3. The membership functions
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Fig. 4. Velocities
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Fig. 5. Tracking result

The controller is the PI control loop which is
designed well known LQ algorithm. In order to the
diagonal gain matrix, some technical trick is used
for selecting weighting matrices. It is shown by
Fig. 4 that the velocity following error becomes
zero. But the overshoot is occurred and by it, the

tracking results include error.

V. CONCLUSION

In this paper, the DDWMR is considered. The
T-S fuzzy model for DDWMR is presented and
control algorithm is suggested. The controller is
the PI control loop which is designed well known
LQ algorithm. In order to the diagonal gain matrix,
some technical trick is used for selecting weigh-
ting matrices. It is shown by this paper that the
presented algorithm is more easy wayv of control of
the DDWMR and that the result of this paper can
be applicable to car-like WMR.
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