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INTERIOR TRANSITION LAYERS OF
NONCONSTANT SOLUTIONS FOR THE
SCALAR GINZBURG-LANDAU EQUATION *

Bong-soo Ko**

1. Introduction

We study the existence of interior transition layers for classical nonconstant
solutions of the following Neumann problem if € > 0 is small :

eAu+u(l -u?)=0in Q,
(Ic) ou

6_71:0 on 01},

where g—; denotes the outward normal derivative of v on dQ and Q@ = QU

982, Throughout this paper 2 will be open bounded convex domain of R"™,
n > 2, with 9Q € C? . We call the above equation (1) a scalar Ginzburg-
Landau equation. The author proved the following existence theorem of classical
nonconstant solutions of (I.) for a general open bounded domain Q with the
smooth boundary.

Theorem 1.1. [I] There is a small number €3 > 0 so that for any 0 < € < €,
(I.) has a nonconstant classical solution u. with the property —1 < u.(z) < 1
for all z € Q. Furthermore, for any sequence {en} of positive real numbers so
that €, — 0 as n — oo, there is a subsequence {¢,, } such that

lim v, (z) =21 ae in Q.
—00 k
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The mountain pass theorem is used to prove Theorem 1.1 in [1]. More pre-
cisely, we proved the existence of the nonconstant critical point ue of the follow-
ing functional :

Je(u) = §L|Vu(m)|2dm + % /Q(u2(x) —1)%dzx

in the Sobolev space W1-2(Q), which is the nonconstant classical solution of the
problem (I.). We denote by W12(2) the space of functions in L?(Q) whose first
order generalized partial derivatives belong to L?(Q).

We call the nonconstant critical point u. the nonconstant solution obtained
by the mountain pass theorem. This means that

Jo(ue) = inf sup Je(h(1))
h 1ef0.1)

over all continuous paths h from the interval [0, 1] into W12(Q) with h(0) = —1
and h(1) = 1. Furthermore, we proved that

kli_}ngo Jen, (Ue,, ) =0.
For the details of the above, we see [1].

Kohn & Sternberg [2], Dancer & Guo [3] proved the existence and the interior
transition layers of the nonconstant classical solutions of (I). Their solutions
u. are local minimizers of the following functional K. :

1
K (u) = E/ |Vu(z)|?dz + — / (u?(x) —1)%dzx
2 0 4e Q
when the following functional Ky :

2v2
Ko(u) = %_—Perg{u =1}
has an isolated L!-local minimizer ug, where {u = 1} = {z € Q|u(z) = 1}.
Here Perg{u = 1} means the perimeter of the set {u = 1} in Q. We will see
the the definition of the perimeter in Section 2. They showed
and the interior transition layer occurs in the thin neighborhood of the hyper-

surface
G{UQ = 1} N Q,



INTERIOR TRANSITION LAYERS OF NONCONSTANT SOLUTIONS FOR THE SCALAR GINZBURG-LANDAU EQUATION - 389

where d{up = 1} is the boundary of the set {ug = 1}. The existence of iso-
lated L!-local minimizers of K depends on the geometry of J€). For examples,
dumbbell-shaped domains may have such minimizers. But if © is convex, we
cannot expect the existence of those minimizers.

So we have two questions from Theorem 1.1 when  is not dumbbell-shaped.

(1). Does the solution Uc,, have an interior single transition layer as ¢,, — 0
o

(2). If so, where does the behavior occur ?

Sometimes, we call those two questions a free boundary value problem. In this
paper, we answer the above questions. We prove that the nonconstant solution
obtained by the mountain pass theorem has an interior transition layer under
some assumptions on the convex domain 2. We see Theorem 3.4 in Section 3
for the results.

Furthermore, we can construct the location of the interior transition layer of
the nonconstant solution u, as € — 0 using a method of the mountain pass type
for the perimeter valued functional

1h(t) = 22 Pera {h(t) 1)

on all continuous characteristic paths k with h(0) = ~1, h(1) =1,and h(t) = 1
in the space L!(12) of all Lebesgue integrable functions from §) into R!. To show

that, we need to use the concept of the perimeter theory for functions of bounded
variation.

2. Functions of Bounded Variation and I'-Convergence

We describe some of the basic definitions and properties of functions of
bounded variation. Let C!(€;R™) be the set of functions from € into R™
having continuous first partial derivatives in ©, and let C}(Q; R™) be the set of
functions in C?(£2; R™) with compact support in Q.

For u € L'(Q), we define

[1pu= o [ @)V g s,
Q geCH(R) Jg|<1/Q

0 0
h — - =
where V <6$1 , Dz,
functions of bounded variation, BV (Q2), consists in those u € L!(f) for which

Jo|Du| < oc; BV(£) is a Banach space under the norm [4,5,6];

lullpva = /Q ju(z)| dz + /Q \Dul.

) for z = (x1,--- ,z,) € R™. We define the space of
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We note that |Du| is not an L!-function, but rather the total variation of
vector valued measure Du. Moreover, the Sobolev space W' 1() is contained
in BV(Q) and [, |Du| equals, for u € W'!(f), the ordinary Lebesgue integral
Jo IVu(z)| dz.

If u € BV(Q), the integral of any positive continuous function h with respect
to the measure |Du| can be expressed as

/ h(z)}|Du| = sup / u(z)(V - g(z))dz.
Q Q

geCH (R, lgI<h

An important example is the case when u = X}, the characteristic function
of a subset A of R®. Then

/ |Du| = sup /(V - g(x))dz.
Y geCH(S[R),|g|<1 /A

If this supremum is finite, A is called a set of finite perimeter in Q. If A is
smooth, then by the divergence theorem

/ |Du| = H*"1(0ANQ),
Q

where H" ! is (n — 1)-dimensional Hausdorff measure. It is therefore natural to
define the perimeter of any subset of €2 by :

Perq A = perimeter of A in

=/ \DX.a).
Q

Without loss of generality, we denote
PergA = H" 1(0ANQ).

For the details of the above results and the following theorems, we see (4,5,6].

Theorem 2.1. (Lower Semicontinuity) If ue — u in L*(Q), then

/|Du|§liminf/ | Du.|
Q e—0 N

Theorem 2.2. (Compactness of BV in L') Bounded sets in the BV -norm
are compact in the L'-norm.
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Theorem 2.3. (Co-area Formula) For any continuous function f and any
Lipschitz continuous function h and any differentiable function g,

/Q [IVg(h(@)? + f(h(z))] [Vh(z)|dz

= /Rl { [%g(s)r + f(s)} H Yz e Q: h(z) = s}ds.

We can find the following definitions and theorems in [11]. Let X be a topo-
logical space. The set of all neighborhood of z in X will be denoted by N (z).
Let { .} be a sequence of functions from X into R'U{—o0, +00}. We define the
I-lower limit of the sequence {F,} the function from X into R! U {—o0, +0o0}
by

(I' = liminf F,)(z) = sup liminf inf F,(y).
n—oo0 UEN(JS) n— 00 yEU
Theorem 2.4. Let {F,,} be a sequence of functions from X into R'U{—oc, +oc
}. Then
I' — liminf F,, < liminf F},.
T— 00 n—oo

Let {E,} be a sequence of subsets of the topological space X. We define the

K-upper limit of E,, denoted by

K — limsup E,,

n— oo

is the set of all points ¢ € X with the following property: for every U € N (z)
and for every natural number k there exists a natural number n > k such that
UNE,#0.

Remark. By the definition

K —limsup E,, = N3_Un>mFEn.

n—o0

Theorem 2.5. Let {E,} be a sequence of subsets of X, {Xg_} be the corre-
sponding sequence of characteristic functions, and let

E =K -limsup E,,.

n—00

Then
1 -Xg =T —liminf(1 - Xg_).

n—o0
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Proof. Let
I' - linlinf(l - XEH)(-T) = Xp(z)

Then if Xr(z) =0, then

0= sup liminf 1nf(1 - X )(y),
UeN(x) n—ooo yelU

and so for any U € N (z),

liminf inf (1 — XE Wy) =0,

n—oo yelU

and hence E, NU # 0 for infinitely many indices n. Therefore, ¢ € E. Thus we
have the following;
z¢ F implies z € FE.

We can prove the converse of the above statement by the same method.
This completes the proof.

3. Interior Transition Layers

Let H be the collection of all continuous paths h from [0,1] into L!($2) with
h(0) = —1 and h(1) = 1. Let B, (Q2) be the set of functions v € LY(Q) such that
v(z) = x1 a.e. on Q and let

H, ={h € H|h(t) € B,(Q) forall te][0,1]}.

We define the functional I : [0,1] x L}(Q) — R! U {oc} by

2V2
sup ——Perq{h(t) =1 if he H,,
I(h){tew *=Pera {h(t) = 1} y

00 otherwise.

We also define the number 7y as follows:

Yo = hlenfx I(h).

We note that 0 < 9 < co. Next, we choose a sequence {h,,} in H, and sequences
{an} and {t,} of real numbers in [0, 1] such that

Perq{hn(t,) = 1} + an = sup Perq{h.(t) =1},
te(0,1]
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lim a, =0,
n—00
and V3
. 242
nango TPGTQ{hn(tn) = 1} = Yo-
Let
Q, = ﬂ;‘:zluan{hn(tn) = 1}
and
Fo=00'NA.
Proposition.

3
DXxn| = —
/{;l Ql 2\/570

To show the equality, we need the following lemma. First of all, we let
Em = {hn(tn) =1}.
It follows from the definition that

K —limsup E,, = .

n—o0

Lemma.
' —liminf(1 — Xg_ ) = liminf(1 — Xg )
m—0o0

m—o0

a.e. in Q

Proof of Lemma. ;From Theorem 2.4 and 2.5 it suffices to show that

[ —liminf(1 — Xg_ ) > liminf(1 — XE,_)
m-—00

m— 00

a.e. in 2. Suppose that there is a Lebesque measurable set E whose Lebesque
measure is positive such that

liminf(1 — Xg,_)(z) > sup liminf inf (1 — Xg_)(y)
m—oo UeN(z) Mmoo yeU

for all x € E. Hence, for any z € F

liminf(l — Xg_)(z) =1

m—o0
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and
r- lirrlr_ljgof(l - Xp )(z)=(1- Xa)(z)=0.

Thus, z is in €’ almost everyehere. Therefore, the Lebesque measure of ' N E
is positive. But we have a natural number n such that for all k > n,

(1- Xg,)(@) = 1.

This means that x ¢ Ey for all k > n. From the definition of ¥, the Lebesque
measure of ' N E is zero. This leads to a contradiction for the above result.
This completes the proof of Lemma.

The Proof of Proposition. By Theorem 2.1, 2.5 and the above Lemma, we note

that
DXn——/Dl—XI < —
/Q| | |D( o)l 2\/—

To show the equality, we assume that

3
DXq/| < —=0.
L‘ Q| 2\/570

Then since liminf,, ,., g, = Xq/, so
sup liminf V- g(z)dr < —=.
geCIHQR™) Jgl<1 ™ JE,, 2v2

This implies that there is a positive number r such that

3
lim inf V- <r< —=
}n—mo/ g(z 2\/570

for all g € C3(Q; R™), |g| < 1. Hence, for any n > 0 we assume without loss of
generality there is a natural number m,, which is independent of g, such that

Voglzddze <r+n< —
/ 9(z) n 2\/‘
for all m > m,, and for all g € C}(§; R™), |g| < 1, and hence

sup / V - g(z)dz = Pera{hm(tm) =1} <7 +17
9€C(UR"),|g|<1JE

for all m > m,,. Since n was arbitrary, so

22
lim —3£Perg{hm(tm) =1} < 7,

m—00

which leads to a contradiction.
This completes the proof of Proposition.
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Example. In many cases we can explain the set
[p =8 NAO.

If we consider 2 C R? as the ellipse of semi-major axis @ and semi-minor axis
b, by the fact that Co(2; R™) is dense in L}(f2),

To = {(0,5) € R?| —b <y <b}.
We also note that uniqueness, connectedness, and the regularity of the set I'y

depend on the geometry of (2.

Assumption. Throughout this paper, we assume that §? is convex, I'g is con-
nected, and Ty € C?.

Definition. That I'g is unique means that if h € H, with

sup &Perg{h(t) =1} = ﬂPerQ{h(t*) =1} < 2—\/—27{"—1(1‘0)
te[0,1) 3 3 3

for some t* € [0, 1], then
Fo=0{z€Q|h(t*)=1}NQ

a.e. in Q.
Example. If () is the ellipse

2 1,‘2 y2
Q={(z,y) €R |§+b_2<1’0<b<a}’

then I'p = {(z,y) € R?| — b < y < b} is unique.

We choose two connected disjoint nonempty open subsets ; and 2 of €
such that

QU =0

and
[y =00, NON,.

If we denote d(z, o) the distance from z to I'g and define

d( ) { d(a:, Fo) if zey
T} =
—d(.’L‘, Fo) if v e Qg,
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and if H* 1([g N AN) = 0, then we note that d is a C%-function in the set
{ld(z)| < s} for some s > 0 with |Vd| = 1. Furthermore,

lim H* Hd(z) = s} = H" 1(Tp).

For the above facts, we see [4,5,6,7,8]. Let

at —at

Z(t) = tanhat = ;«I:%
and a > 0. Then
(3) 1-Z(t) <272 (0<t<o00)
and
(4) 1+ Z(t) <2 (~o0<t<0).

Now we define a function g, : R! — R which effects the transition between —1
and 1 as follows :

(1 if s> 24/e,
< (‘f)>(s—2f)+1 if Ve<s<2v/e
ge(s) =4 Z(%) if [s| < Ve,
Uaniisi
(s+2ve) =1 if —2V/e<s< e
if 8 < —24/e.

Replacing s by d(z), we obtain a function v, from Q into R! is given by

ve(2) = ge(d(z))-

Since 2 is convex, we can find a directed line segment in  with the direction v
so that for any 7 € [—1, 1], the set

I, ={y+7veR"|yelo}

has the following properties:
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o There are two numbers ~1 <7, <0 < 7 < 1 so that | A N and I, N
are singleton sets.

o 2\ T, is the union of disjoint two components if 7, < 7 < 75.

oI, NN = 0 if either —-1<7t<mnormn<7t<l.

o H* T, NQ) < H*YTy) for all 7 € [—1,1].

In that case we define the following sets:
Q=0n{y+rv|-1<r<7, yely},

2 =QN{y+rv| 7<r<1, yeTly},
=0, and 09 =0,

Using the previous function v., we define the special continuous path A. :
0,1] — W12(Q) with he(0) = —1 and k(1) = 1 as follows: For any 7 € [-1,1]
and z € Q, we let

1 if d(z,T,) > 2//e,

Fe(a(r+ 0)(@) = { (@ () i ~2VE < d(z,T,) < 25,
2 1 if  d(zT,) <-2ye

where )
7 (z) = { d(z,T';) Tf z € Q]
—d(z,T;) if z€ Q3.
And let
-1
(5) hE(t) = hE(E(T + 1)),

where ¢t = 2(7 + 1). If € satisfies the inequalities
d(r—hQ) 2 2\/E and d(rl’ Q) Z 2\/29

then h. becomes a continuous path from [0,1] into W2(Q) with h(0) = —1
and h.(1) = 1. Let

for t € [0,1] with 7 =2¢ — 1.

The main idea in the proof of the following theorem can be found in [5,6].
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Theorem 3.1. Let h. be the previous special curve (5) from [0, 1] into W1:2(Q)
with h.(0) = —1 and h.(1) = 1. Then for any t € [0,1] with T =2t — 1,

2\/—7{71 1

1
lim = J.(he(t)) = r.NQ).

Proof. We first note that

€ 1 9
E\WT ()2 + — (07 (z))? ~ 1 ]dxzo_
-/{Id*(z)lzwé} [2 de ( )

Hence
1 T
z ']E (Ue )

¢ T 1 T 2
/{ld*(z)lszf} [§|VU‘ @) 2e (¥ (z)* - 1) } dz
1
4

- [ [ Vo7 (@) +
{(ldr(@)<ver L2

SV @ + 4 (@) - 1| v @) ds

+ [
{(ve<lar(z)l<zvey L2
2 2 2
L1 ((tanhM) _1) ]
4e €

B /{ld'(r)l<f} [2
V& @lds+ [ [£ 90 @) + (@) - 17]

{Ve<ldr ()| <2ve}
\Vd" (z)] dz.

(7 (@))? - 1)2] V" (2)| de

ad™ ()

€

V tanh

By the Co-area Formula (Theorem 2.3),

/*\ff % (55 (tanh gef))z " i ((ta"h ?)2 B 1)1 H*Yd"(z) = s}ds
+ /2\/2 [g (Eds‘ge(s))z + ﬁ ((ge(s))? — 1)2] H () = s} ds

_Ve 2
+/ [—62- (%95(8)) + 4l ((ge(5))? = )2} H*~Hd"(z) = s} ds.
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First :

/;f[g (%9 5))2+i () - )JH" Hd" (@) = s} ds

From the decay estimate (3), the above integral approaches zero if € — 0.

A similar approach leads to the same conclusion concerning the following :By
the decay estimate (4)

-ve [, 2
L. [5 (520:9) + 4 oo - 1)2] " (z) = s}ds — 0

ife —0.
Second :

7[sG bome) o 2 (o2 ) st - 1
_ /“Z (G

9 2
- 1) H* Yd (z) = s}ds

2 NG 2 2
< ( sup H" N{d (z) —s}) 20 +1/ ((tanh g) - 1) ds
ls1< Ve € Jove €
2 tanh%
= ( sup H* Yd"(z) = s}) 20" + 1/ (11—t dt
ls|< /e 4o Jiann({- )
202 + 1 a 1 ( a )3
={ sup H" Hd (z tanh — — - | tanh —
([sl<l\)/_ t7(z) = }) do [ ve 3 Ve

(5) 4o (2]

Hence, combining the first and the second,

1 2
limsup —J(v]) < o

msup - 3 Perg{v () =1}
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for all @ > 0. Here v"(z) = 1 for z € Q] and v"(z) = —1 for z € ;. The right

hand side of the above inequality has the minimum value at o = ﬁ Hence,

2\/—?{" 1

lim sup — J( < r,NQ). (%)

e—0

We note that
1
;Je(v /IVv |2da:+—/ v (z))? - 1) dz

/|VU (1 - (o7 (2))?) de

by the Cauchy-Schwarz inequality. Then

1 Ve (:r)
liminf = Jc(v]) > hmlnf V/ (1 — t?)dt| dz.
e—0 €
Since lirr(l)v: =" a.e. on §},
' v (x) , (x) )
ll_l;% B (1-t¢ )dt:‘/_1 (1—t%)dt.
By the lower semicontinuity (Theorem 2.1),
liminf lJE(v:)
v] ()
/ thmf (1—t%)dt| dzx
v7(z)
V/ (1 — t%) dt| dz.
Now
v7(x) 0 if {’UT = —1}
/ (1-tHdt=¢ 3
~1 n if {v7 =1}
By the definition of the perimeter,
v"(z) 4
V/ (1-t%)dt|dz = §Perg{v" =1}.
Hence V3
1 2v/2
3 . _ T > —y- T —_
h?l,lcr)lf eJe(ve) 23 Perq{v™ = 1}. (%)

From (*) and (**), the proof is completed.
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Theorem 3.2. For any sequence {e,} of positive real numbers so that €, — 0
asn — oc, let ue, be the nonconstant solution of (I ) obtained by the mountain
pass theorem. Then there are a sequence {k._} of continuous paths from [0, 1]
into W'2(Q) with k., (0) = —1 and k. (1) = 1 and a sequence {t,} of real
numbers in [0, 1] such that

Bm Ik, (tn) = ue,llwraga) = 0,

Y
- 3

limsup sup iJen(ken(t)) H™ (D),

a0 tef0,1) €n

and
lim k., (t) = %1
n—00

for allt € [0,1] and a.e. in Q, where |- ||w1.2(q) is the usual norm on the Sobolev
space W1:2(Q2).

Proof. Let {,} be a sequence of positive real numbers with 6, = o(e,) as
€, — 0. Since

Je, (ue,,) =inf sup J. (h(t)),
h tejo,1)

by the well-known Deformation Lemma [12] there is a continuous path k., from
[0,1] into W1-2(Q) with k. (0) = —1 and k., (1) = 1 so that

sup Je (ke () < Je, (ue,) + 6p,
te(0,1)

ke, (t) — ue,llwr2(n) < On,

and

Je, (ke, (tn)) = sup Je (ke (1))
te[0,1]
for some t,, € [0,1]. For the details, we show the existence of the path. Let ¢,
be fixed. ;From the definition of J._ (u.,), we have a continuous path k., from
[0, 1] into W1:2(Q) with k._(0) = —1 and k(1) = 1 so that

*) sup Je, (ke (1) < Je, (ue, ) + 6n
te[0,1]

and

(**) Jen (ke (tn)) = sup Je, (ke (1))

te(0,1]
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for some t,, € [0,1]. Then we prove the existence of a continuous path k. from
[0,1] into W12(Q) such that k. satisfies the above (x), (¥x), and

ke, (tn) — ze, lwr2q) < On-

Suppose that there is no such any continuous paths. Then

ke, (tn) — e, lwrz@) = On

for all such paths. From the definition of J¢ (uc,), there exists a sequence of
continuous path pj from [0, 1] into W12(Q) such that px(0) = —1, pe(1) = 1,

Pk (tk) — ve, lwrzgn) 2 6n

and
Jm Je, (pi(te)) = Je, (€n),

where J, (Pk(tk)) = supPse(o,1] Jen (Px(t)) for some ti € [0,1]. Let 8 = J,,_ (ue,)
and N = B(u._,J,) be the open ball centered at u., with its radius 4, in
W2(Q). Since J., € CY(W12(Q)) and satisfies the Palais-Smale condition, the
well-known deformation lemma [pp.75, 12] implies that for any § > 0 there exist
a number § with 0 < § < § and a continuous 1-parameter family of homeomor-
phisms ®(-,t) of W12(£), 0 < t < oo with the properties

(i). ®(u,t) =uift =0o0r £ J. (u) =0, or |J (u) ~ 3] > §;

(ii). Je,(®(u,t)) is non-increasing in ¢ for any u € W12(Q});

(iii). Je, (®(v,1)) < B—-9dor &(v,1) e Nif J. (v) < 3+4.

Since limk o0 SUPyeo.1] Jen (Pk()) = Je, (e,), there is a path pi such that

sup Je,(pk(t)) < B+6.
tefo.1]

From the above deformation and the assumption that the maxima of J._(®(p«
(t),1)) is not contained in N,

Je, (®(pe(t),1)) < B -0

for all t € [0,1]. This leads to a contradiction for the definition of 3.
For the special path k. in Theorem 3.1, we note that

Jén(ufn) S Sup JEn (h'fn (t))
te(0,1]
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Hence, by Theorem 3.1,

. Je, (ue : 1
lim sup M < limsup sup —J_(h, (1))
€, —0 €n e,—0 te[0,1] €n

\/—’H" 1) < 0.

Thus,
\/_

1
limsup sup ., (ke, (1)) < 2X2H"1(To).
en—0 te[0,1) €n

This implies that

0 = limsup sup J., (k,(t))
a0 te[0,1]

2
= limsup sup (%/ |Vk5n(t)|2d$—+— %—/(1 — k?n(t))zd.??)
Q Q

en—0 t€[0,1]

Therefore,
lim k2 t) =1

€, —0
a.e. in Q and for all t € [0,1].

Theorem 3.3. Assume I’y is unique. Let u.,, be a nonconstant solution of (1)
obtained by the mountain pass theorem and let 7., = Je (uc,) . Then

= = 7Yo.

n—00 €p

Proof. Since (2 is convex and smooth and I'y is unique, we can choose a point
To € 'y so that

H" HI'nQ) > v
for every connected hypersurface I passing through zo and Q\I" is disconnected.
Then we can also choose the sequence of continuous paths k., (¢) in Theorem 3.2

and a sequence {t,} of real numbers in [0,1] so that k., (0) = -1, k. (1) = 1,
zo € {ke, (tn) =0} and

/|1 k2 (tn)l|Vke, (tn)|dx

(*) < sup Jen(ken(t))
tef0,1] €n
< Jen on
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We can assume §,, = o(e,, ) as in the proof of Theorem 3.2. Let I'c, be a connected
subset of the level set {x €  : k. (tn) = 0} with 20 € T'.,. We denote that
ke, (t) by k. (-,t) which means a function from 2 into R!. Then since

lim k? (z,t) =1
€e,—0 7

a.e. in 2, we let
Qo={ze€: limirtl)fken(m,tn) =1}
€n—

Then from the above (x)

.o Ve
Hminf —
en—0 €,

> liminf sup iJ ke, (z,1))
€0 4e(0,1] €n

> liminf —/ 11— k2 (z,t,)||Vke, (2, tn)|dx

€, —0 \/_
ke, (z,tn)
V/ (1 - s?)ds|dz

= hm mf —
en(x tn)
Vllm 1nf/ (1 - s?)ds|dx

> —=
€n,—0

= —3—PeI'QQO

Let
F2 = nzzlunzmren

Then I'; is connected and contains zg. By the definition of K-upper limit of the
sequence [, , we have

I CopN ae
with respect to H"~1. Hence by Proposition

2
—3\/—‘ Perqlg

2\/—7_[11 I(F )

g/ﬁ}ln—l(ren)

= lim mf
Gn—)

> Y
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We note that

€ 2
lim inf Jen < — v2 sup ’H""l(l“.,. NQ) = .
en=0 €n re(-1.1)

This completes the proof.
The following theorem is the main result of this paper.

Theorem 3.4. Let 'y be unique. If {¢,} is any sequence of positive numbers
with €, — 0 asn — oc and if {u., } is the sequence of the nonconstant solutions
of (I, ) obtained by the mountain pass theorem, then there is a subsequence
{€n, } of {en} so that

. 1, if ze Ql
lim u., (z)= _
€n, 0 "k -1, if z€Qy

uniformly on every compact subset in Q; U 22, where 'y = 301 N 0S2;.

Proof. From Theorem 1.1, we assume that there is a sequence {u._ } of the
nonconstant solutions of (/) obtained by the mountain pass theorem so that
lim, _ou., = 1 a.e. in {2, and let h., be the sequence of continuous paths in
Theorem 3.1, and let {k._} be the sequence of continuous paths in Theorem 3.2.
By reparametrization of k. _(t) about ¢, we can assume that the existence of the
continuous path, we again denote it k., from [0, 1] into W12(2) and that the
existence of the sequence {t¢,} of real numbers in [0, 1] such that

clnigl() kan (tn) = Ue, ”W'l'z(g) =0,

1 2
limsup sup —J.. (ke, () < ‘fw Y(T),
en—0 t€[0,1] €n

1 1
—Jen e, (1)) < ;Je,,(he"(t)),

and
lim k. (z,t) = %1
€, —0

for all t € [0,1] and a.e. on 2. From the following inequality
1
_Jen (kfn (t))

/]1-& (2, 8)[[Vk... (z,)|dz

n(z,t)
/ (1 — s?)ds|dz,
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we obtain

lim inf 1J (ke, (1))

en—0 €, en
ken(z0t)
V/ (1 — s%)ds|dx (6)

a(x,t)
= liminf — sup / (/ (1- s2)ds) (V- g(z))dz.
€n—0 \/_ 2 gecl(@iRn),|gI<1 -1

From the following inequality

1 /(/ en(Z:t) ) )
— sup 1—s%)ds ) (V- g(x))dz
V2 gecy(@Rn) jgi<1 Lo : @

/(/ o 1—32)ds>(v.g(z))dz

for all g € C}(; R™) with |g| < 1, we have the following:

ke, (z,t)
liminf — sup / (/ (1- sz)ds> (V- g(z))dz
€n—0 \/~gecl(9 Rn),Jg|<1 (

2(zot)
> sup liminf —/ (/ (1- sQ)ds) (V- g(x))dx.
gECH(QR) Jgj<1 €m0 V2

Then by combining (6) and (7) and using Fatou’s lemma, we have

> liminf —

(7)

hmlnfl e (ke ()

en—0 €,

> /Q lim inf [ / B sz)ds} (V - g(2))dz. )

- \/EgeCé(Q;R"),|g|gl a0 |/

Now, we define the set

ken(l‘,t) 4
Qt) = {z € Q| hmi%f/ (1 s%)ds = 3}.

-1

Next, we define the characteristic function Xy on by Xo)(z) = 1if z € Q(¢)
and X (z) = 0if z # Q(t). Then by the definition of the perimeter of a subset
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of  and by (8),

liminf iJen(ken €3))

en—0 €,

1 4
> L / 2 Xow (@)(V - 9(2))dz
V2 geci@Rrn) gl<1Ja 3 “

2v/2
) R / Ko (2)(V - g(x))dzx
geCy(RM),1gI<1JQ

= ?PerQQ(t).

Claim For any sequence {t,,} in [0,1] with ¢t,, — t as m — oc,

lim sup A(Q(tm ) D2(E)) =0,
where X is the Lebesgue measure on R™ and A means that AAB = (A\ B)U
(B\ A).
Proof of Claim_ Suppose that

lim sup A(Q(tn)AQ(E)) > 0.

m—r00

Then we let

Q" = M= Uk>m (Qte) AQ(E))-
Then

M) = lim A(Ukzm(Qtx) H0A1)))
> limsup AM(Q(t) A0(E)) > 0.

m—00

Then there is a measurable set E C Q*NQ with the following properties: A(E) >
0 and for any m there is k > m such that

E c (Q(tk) \ Q1)) U (2() \ Q(tx))-

Then we let
Eip = EN(Q(te) \ 1))

and
EyY = EN(Q(t) \ Q(tx))

for such k. First, suppose that

lim inf A(E}) > 0.
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Then
Ko@) # liminf Xo( ).

But we note that
Qt) = N =1Un>m(tn)-

Then, Theorem 2.5 and Lemma imply
XQ(t) =T - llnrr_l}lolcl)f XQ(tn)
= liminf XQ(t,.,)
n—00
This leads to a contradiction. Hence,

hm 1nf/\(E ) > 0.

Then by the similar method, we can also see a contradiction. Thus,

ME) = hmmf/\(Ek) + hmmf/\(E ) =0.

This also leads to a contradiction.

This completes the proof of Claim.

Therefore, the characteristic function Xq : [0,1] — L!}(Q) is continuous.
We hence define the continuous path & from [0,1] into L}(Q) by

From (9) and Theorem 3.1
2V2

TPerQ{k =1}
= %_Pergﬂ( )
< lim 1r(1)f iJ ke (1)

Tl

< lim inf — Jen (he, (1))

._;

2‘/_7{" Yr,ng)

for all t with 7 = 2¢t — 1. From the uniqueness of Iy, we have

o = 8{k(t") =1} NQ
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for some t* € [0,1]. Since

ke, (tn) = ue llwi2ga) — 0
as €, — 0, by Holder inequality
ke, (tn) — ue,llL1(@) — O.
Here [lu| 1) = [, |u(z)|dz. Therefore, if
limsup |k, (tn) = k()| 1 (@) = 0,

n—00
we are done.
So we show the last limit. Since " }(I'; N Q) has only one maxima in T,
Theorem 3.3 implies that ¢, — t* as n — oc.

Clearly, we note that
limi%f ke, (t) = k(t)

€n—

a.e. in ). Let a positive number é be given. Since k is continuous at t*, there
is a positive number 7 such that

|s—t*| <n implies [|k(s) — k(t*)||L1(q) < 8.
This means that
ken (8) = K(t*)Lr() < &
for sufficiently small €,. If n is so large that |t, — t*| < 7, then

ke, (tn) — k(t" M Lry <8

and so
limS%P ke, (tn) — k("M L1 () < 6.
€n—

Since § was arbitrary, so
J‘igo ke, (tn) — k(t*)”Ll(Q) =0

Therefore,
Jm ue, = Xoe-) = Xor
a.e. in Q.

The uniform convergence of u. on every compact subset of ;U5 as €, — 0
follows from the well known linear variational method, the uniqueness and the
maximum principles. See [1,9,10]

This completes the proof of Theorem 3.4.
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Theorem 3.5. Let Q be an open ball in R", and let P be a n — 1 dimensional
hyperplane passing through the center of the ball, and let T = QN P and
Q\T = Q, UQy. Then there is a sequence {ue,} of nonconstant solutions of
(I,) such that

1, if zey

lim w., (z) =
m, ten () {-1, if ze.

€n
uniformly on every compact subset of {3 U €,.

Proof. Without loss of generality, we assume that the center of {2 is the origin.
We consider a sequence {v.,} of nonconstant solutions of (I, ) which are ob-
tained by the mountain pass theorem and lim,_,ov., = £1 a.e. in Q. If we
consider I' as [y, by Theorem 3.2 and 3.3, we have a sequence {k., } of con-
tinuous paths from [0,1] into W'2(Q) with k. (0) = —1 and k. (1) =1 and a
sequence {t,} of real numbers in [0, 1] such that

eiigo “kén (tn) = Ve, ||W1'2(Q) =0,

1 2
limsup sup —J,_ (ke (t)) < -2———\/—?{"_1(1“0),
en—0 tef0,1] €n 3

Loy (e () € o (B (2)

n

and

lim0 ke, (z,t) = %1

for all t € [0,1] and a.e. on §, where h, is the continuous path in Theorem 3.1.
Let

. . k‘n(zvt) ) 4
) = (=€ altmigt [ 70 - ie = 5)

and let
k(t) = 2Xq) — L.

Then & is a continuous path form [0, 1] into L1(Q) with £(0) = —1 and k(1) = 1,
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and for some t* € [0, 1]

%Perg{k t*) =1}
= sup 2—\/—?Perg{k(t)= 1}
te(0,1) 3

< sup liminf — 1 Je, (ke (1))
te0,1] €0 €n

= lim 1%f Je, (ke (tn))

€n—>
\/_»Hn 1(1-\ )
Hence,
liminf k. (t,) = k(t¥)
€, —0
and

Hk(t*)=1}nA=Qn P’
for some hyperplane P’ passing through the origin. Let
I’'=0QnP and Q\I'=QjUQ,.

Then we note that

-1 if e

€n—

1 if z€Qf,
lim mf Ve, (T) =

Let r¢ be the rotation through the angle 6 about the origin so that r¢(P’) = P
Let u., = v, (rg). Then uc, is also a nonconstant solution of (I,,) and

lim 1nf ue, () =

€n—

1 if zey,
-1 if e,
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