소형 스크류 프로팰라의 부식제거장치 개발

김 귀 식* • 현 창 해** • 한 세 웅***

Development of Corrosion Removing Unit for Small Screw Propeller

Gui-Shik Kim* · Chang-Hae Hyun** · Se-Woong Han***

ABSTRACT

The materials of ship screw propeller are commonly the manganese bronze. The seawater corrosion and cavitation of the screw propeller reduce the propulsive performance of ship. In screw manufactory, the corrosion rust of the screw propeller is removed by a hand grinding. The grinding work makes the dust of the heavy metals from the manganese bronze. The dust makes indoor working environment poor. A friendly-environmental and automatic corrosion removing apparatus was developed for the improvement of screw processing and working environment. The corrosion rust of a screw propeller was remarkably removed by using apparatus. And the screw surface roughness was improved by a blasting effect of the apparatus performance test. Anode polarization curves on four processing conditions, that is to say, grinding, blasting, wire-brushing, fine sand papering, were confirmed by a potentiostat. Especially, two kinds of medials, alumina and emery, were used in the blasting processing. This result proved that the blasting work has considerably improved the corrosion resistance of a screw propeller.

Key Words: Screw propeller, Blasting, Corrosion rust, Grinding, Anode polarization curve

I. 서 론

선박용 스크류 프로펠라(이하:스크류)의 재질은 대

제주대학교 기계·에너지·생산공학부, 첨단기술연구소 Faculty of Mechanical, Energy & Production Eng., Cheju Nat'l

Univ., Res. Inst. of Adv. Tech.

** 제주관광대학 메카트로닉스계열 Cheju Tourism Collage, Mechatronics Majors

*** 제주대학교 기계공학과 대학원

Mechanical Eng. Graduate School, Cheju Nat'l Univ.

부분 동합금계로 고강도 황동(망간청동)을 사용한다. 이들 어선들의 스크류는 어업사용 중 표면의 부식과 공동현상으로 인한 침식에 의해 선박 추진성능이 저하되어 스크류 제작사에서 연2회 스크류 표면의 가공을 해한다[1,2]. 이 가공은 핸드 그라인더를 이용하여 수작업으로 표면 부식 녹을 제거하는 연삭작업이며, 이때 중금속인 황동 분말과 부식생성물이 분진이 되어 작업장의 공기 중에 유포되므로 열악한 작업환경이 된다.

핸드 그라인더에 의한 수작업은 스크류의 부식부만 이 연삭되는 것이 아니라 기재부까지 연삭되므로 두 께의 감소로 인한 스크류의 수명의 단축도 우려되며, 정밀 연삭을 한다 하더라도 표면 거칠기가 크게 됨을 피할 수 없다. 스크류의 거친 표면은 스크류의 부식 과 공동현상의 가속에 직접적으로 연관되므로 스크류 의 수명을 단축시킬 수 있다.

일반적으로 구조물의 페인트와 부식을 제거하는 가 공방법으로 블라스팅법을 이용하고 있다. 블라스팅은 고경도의 투사재(Media)를 고압공기로 구조물 표면에 입체적으로 분사시켜 표면처리를 하며, 피닝효과로 경도와 강도 및 내부식성을 향상시키는 방법이다[3-5].

본 연구에서는 어선 스크류의 부식녹제거와 표면가 공을 자동화로 행할 수 있고, 가공시 폐처리 물질의 수집과 처리가 용이하여 작업장의 환경을 개선할 수 있는 기계장치를 개발하고, 개발된 장치에 의한 스크 류의 표면가공효과와 내식성 향상을 검토하였다.

Ⅱ. 재료 및 방법

2.1. 시험편

선박용 스크류의 재료로 사용하는 동합금계의 고 강도 황동 (망간청동)에 대하여 화학성분을 Table 1에, 현미경 조직 및 응력-변형률 선도를 Fig. 1에 나타낸다. 기지가 α상을 나타내고 흰색으로 나타나는 것이 β상이다. 인장강도는 487.2N/mm, 항복강도는 265.5N/mm, 연신율은 22.47%이다.

시험편은 두께 6mm의 고강도 황동 판재를 크기 35(L)mm × 35(W)mm로 하였다. 시험편은 개발된 장치에 의해 표면 거칠기와 경도 및 분극특성을 조사하기 위하여 표면가공 조건을 달리한 시험편과 투사재의 종류를 달리한 시험들로 구분하여 제작하였다.

표면가공 조건에 있어서는 그라인당 가공, 와이어 브러쉬 가공, 블라스팅 가공, 정세연마(#1200 연마지) 가공 처리한 시험편들을 제작하였고, 투사재의 종류 에 대하여는 알루미나(Al-O₃)와 금강사의 두 종류를 사용하여 블라스팅 처리 시간을 변화한 시험편들을 제작하였다. 블라스팅은 Fig. 2에 나타낸 바와같이 개발된 부식제거장치에 시험편을 장착한 후 Table 2 의 조건으로 행하였다.

2.2. 표면거칠기 및 경도측정

불라스팅 전과 후의 표면거칠기는 금속현미경을 이용하여 조사하였다. 경도측정에 사용된 시험기는 로크웰 경도시험기(DTR-200)이며, 압자가 강구인 B-Scale을 이용하였다. 스크류의 각 부분별로 6개의 시험편을 준비하고, 1개의 시험편에 대하여 5개소의 경도를 측정하여 평균치를 계산하였다. 한편, 블라스팅전후의 무게감소량은 시험편을 초음파 세척기로 세척한 후 전자서울을 이용하여 중량을 측정하였다.

2.3. 분극실험

내식성을 조사하기 위한 분극실험은 Fig. 3에 나타 낸 전위차계(Wonatech Co. WPG100)를 이용하여 동 전위 분극측정방법으로 조사하였다.

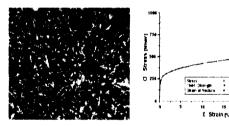


Fig. 1. Microstructure and stress-strain diagram

Table 1. Chemical compositions.

Compositions	Cu	Zn	Sn	Ni	Fe	Mn	Al
wt.(%)	55.3	42.3	0.4	0.1	0.7	0.5	0.5

Table 2. Blasting conditions.

Blasting type	Air pressure	Grit mesh	Nozzle type	Distance	
Direct pressure	6.0kg/cm	Alumina: #48 Emery: #80	Boron 6 ϕ	5cm	

Fig. 2 The specimen for blasting

기준전극은 포화칼로멜전극(Saturated calomel electrode; SCE)을, 대극은 흑연탄소봉을 사용하였다. 분극전위의 구간은 -0.8~+0.8V 이며, Scan rate는 0.2mV/s 였다. 실험용액에 있어 해수를 사용하면 채취지역, 기후, 온도, 및 채취깊이에 따라 해수성분이다를 수 있어 실험결과의 재현성을 얻기 어렵기 때문에 3.5%NaCl 용액을 제조하여 사용하였다[6]. 분극실험용 시험편은 노출면적을 1㎝으로 하였고, 그 이외의 표면은 에폭시 수지로 피복하였다.

Fig. 3. Potentiostat and test cell

Ⅲ. 부식제거장치의 개발

3.1. 블라스팅

본 연구에서 개발하고자 하는 스크류 부식제거장치는 블라스팅 방법의 일종이다. 기본 원리는 Fig. 4에 도시한 바와 같이 블라스팅은 금강사 입자나 쇼트 등의 투사재를 공기압축기나 임펠라 등을 이용하여 적절한 속도로 피가공 물체에 투사하여 입자가 가지는 운동에너지로 제품 표면을 가공하는 방법이다.

이는 순전히 물리적인 방법으로 가공물의 끝마무리 및 표면 후처리를 하여 제품을 고급화하며, 기계부품 은 Peening 효과로 수명을 향상시킨다. 투사재를 공 기압에 의해 노즐로 이송하여 압축공기로 피가공체의 표면에 투사되어 표면을 가공한다. 투사재의 크기는 0.3mm~1.0mm정도로 이를 압축공기에 의해 고속으로 투사하 여 가공체 표면 및 표면하 수백 / m 부분의 조직, 경도 및 잔류옹력을 변화시킴으로서 표면근처의 성질을 개선시키는 것이다.

강의 표면에 1개의 쇼트볼이 전달하려고 하는 에너 지는 다음의 식(1)과 같이 나타낼 수 있다.

$$E_T = (\frac{1}{2} MV^2 \cdot \sin \theta) \tag{1}$$

여기서 M은 쇼트 볼 1개의 질량이며, V는 쇼트볼 의 속도, θ 는 쇼트볼이 재료의 표면에 충돌하는 입사각이다. 반면에 복수의 쇼트볼이 T시간 동안 단위면적에 전달하려고 에너지는 4(2)에 나타낸다.

$$E_T = (\frac{1}{2}MV^2 \cdot \sin \theta) \cdot N \cdot T \tag{2}$$

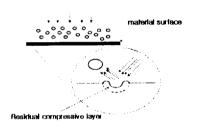


Fig. 4. Schematic diagram of blasting

N은 단위시간당 단위면적에 충돌하는 쇼트볼의 개수이다. 그렇지만 실제로 제품에 전달되는 에너지는 더 복잡하여 쇼트 볼 서로의 간섭(재료표면에서의 입사 쇼트 볼과 반사 쇼트 볼) 및 재료와 쇼트볼이 충돌시 발생하는 변형에 대한 에너지 손실도 고려하지 않으면 안 된다. 그것들을 고려한 전달효율을 K라고 놓으면 단위면적에 시간 T동안 전달되는 에너지 E_T 는 식(3)에서 보는바와 같이 나타낼 수 있다.

$$E_T = (\frac{1}{2} MV^2 \cdot \sin \theta) \cdot N \cdot T \cdot K \tag{3}$$

이 에너지는 제품 표면에 전달되어 일부는 내부마 찰에 의한 열로 변환되고 나머지는 변형 에너지로서 압축잔류응력을 발생시킨다. 그러므로 블라스팅 가공 시에는 제품 표면에 주어지는 물리적 변화 중 압축잔 류응력이 가장 중요한 요소로 작용한다[7].

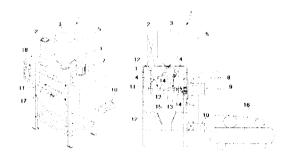
3.2. 부식제거장치 설계 및 제작

개발 장치의 설계도를 Fig. 5에 나타낸다. 이장치는 스크류의 부식 녹 제거작업을 밀폐용기 안에서 할수 있도록 하고, 스크류는 수직방향으로 지지하여 앞 뒷면을 동시에 부식을 제거할 수 있게 하였다. 지지된 스크류는 저속으로 회전하고 스크류의 앞면과 뒷면에 각각 별도의 노즐을 설치하여 투사재를 투사함으로서 부식 녹을 제거 할 수 있도록 하였다. 이 노즐들은 공압 액츄에이터(Air Cylinder)에 의해 상하로 자동 이송할 수 있도록 구상하였다.

Fig. 6은 설계를 바탕으로 제작된 스크류 부식 제거장치를 나타낸다. 장치크기는 폭이 1440mm, 길이가 990mm, 높이가 2360mm이며 이동성을 고려하여하부에 바퀴(Caster)를 설치하였다. 이장치는 창을 통하여 내부 작업상황을 확인할 수 있게 하였고, 밑의폐처리 물질 수거 받이를 설치하여 작업 후 폐물질수거를 용이하게 하였다.

스크류는 장치 내부 중앙의 모터 회전축에 고정되고, 후면의 설치된 모터(1750rpm)는 감속기(감속비50:1)를 달아 바스켓(스크류)을 일정한 저속(35rpm)으로 회전하게 하였다.

불라스트 노즐은 흡입식 공기블라스트로 고압의 압축공기가 불라스트 노즐을 통과하여 분출될 때 공기압에 의해 호퍼로부터 투사재를 흡입하여 압축공기와함께 분사시킨다. 블라스트 노즐은 Air Cylinder의의해 상·하로 이송되며 평균 왕복시간은 15sec이다.투사재의 분사거리는 20~40cm 이며, 투사재의 리사이클링으로 연속작업이 가능하다. 두개의 불라스트노즐은 스크류 앞·뒤로 설치하여 장착된 스크류가회전할 때 상·하로 이동하면서 스크류의 부식을 균일하게 제거 하게 된다.


상부에 달린 송풍기는 부식제거장치 내부와 외부와 의 압력차를 발생시켜 블라스팅 후 장치 하부로 떨어 지는 투사재를 이송관을 통해 다시 상부의 호퍼로 충전시킨다. 이때 외부로 배출되는 공기는 측면의 필터 망을 거쳐 중금속인 황동 분말과 부식생성물 등의 분진을 집진 시킨 후 보내지게 된다.

한편, 이 장치의 작동은 Control Box의 자동 혹은 수동 모드와 타이머에 의해 원하는 작업을 상황에 따라 운전할 수 있으며, 장치 상부에 작업 상태 램프를 통해 현재의 장치 동작 상태를 쉽게 파악할 수 있게 하였다.

IV. 결과 및 고찰

4.1 스크류 부식 제거 실험결과

Fig. 7과 같이 표면이 부식된 스크류를 부식제거장 치에 장착한 후 자동운전으로 20분간 스크류 부식제 거시험을 실시했다. 이때 투사재는 금강사로 입도크기는 #80이다. Fig. 8을 보면 스크류 표면의 부식이 불라스팅 전과 후가 확연히 차이가 나며, 부식이 완전히 제거된 것을 알 수 있다

1.Body 2.Air cylinder 3.Hopper 4.Blast nozzle 5.Air line 6.Screw propeller fixed 7.Air blower 8.Speed reduction device 9.Execution motor 10.Filter 11.Door 12.Wastes outlet 13.Nozzel 14.Injection pipe 15.Screw propeller 16.Air comp. 17.Window 18.Controller

Fig. 5. Design diagram of corrosion removing apparatus

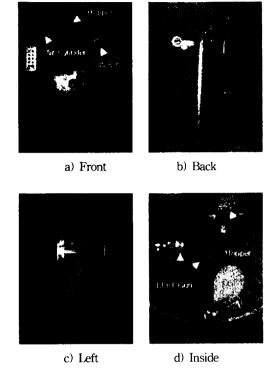


Fig. 6. Corrosion removing apparatus

Fig. 7. Corrosion removing test

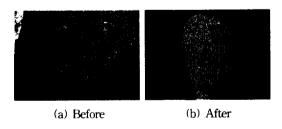


Fig. 8. The result of corrosion removing test

(a) Before

(b) After

Fig. 9. Roughness

Table 3. Hardness [HRB]

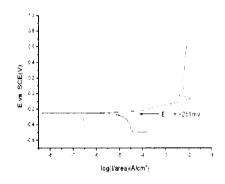
Media		Emery			Allumina(Al ₂ O ₃)		
Specimen	1	2	3	4	5	6	
Before blasting	42.78	41.98	45.28	43.06	44.52	43.76	
After blasting	41.88	42.18	43.16	42.56	44.04	45.24	

Table 4. Weight loss [g]

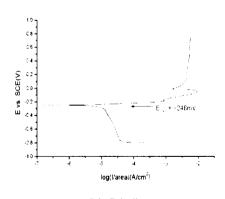
specimen	1	2	3	4	5	6
Before blasting	29.9159	29.5901	29.6992	29.9077	29.9475	29.7059
After blasting	29.7749	29.3757	29.3622	29.8499	29.8013	29.4711
Weight loss	-0.1410	-0.2144	-0.3370	-0.0578	-0.1462	-0.2348

4.2 표면 거칠기 및 경도 측정결과

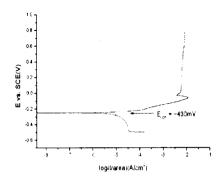
블라스팅에 의한 표면 거칠기는 Fig. 9에서 보이는 바와 같이 금속 현미경(×100)으로 확인한 결과 불라스팅을 실시하기 전에 비하여 표면거칠기가 현저하게 개선되었다. 또, 6개의 시험편의 블라스팅 전과 후의 경도측정 결과는 Table 3에 나타낸 것처럼 그 차이는 크지 않았다. 블라스팅 전후의 무게 감소량은 Table 4에 나타내며 감소량이 적은 것으로 보아 기재의 손실은 많지 않음을 알 수 있다.

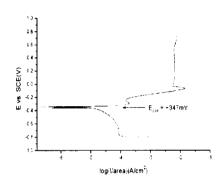

4.3 부식전위 측정결과

4.3.1. 가공조건의 따른 부식전위

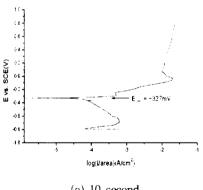

Fig. 10(a~d)는 각 시험편들의 분극특성을 나타 낸다. 와이어브러쉬 처리한 황동의 부식전위는 -251 nV, 연삭처리한 황동은 -248nV, 블라스팅 처리한 황 동은 -347nV, 정세 연마한 황동은 -430nV이었다. 따라서 와이어브러쉬나 연삭 처리에 의한 황동이 가 장 부식이 크며, 블라스팅 처리한 황동, 정세 연마 한 황동 순으로 부식전위가 저하한다. 그러므로 불 라스팅 처리를 행한 소재는 와이어브러쉬 처리 혹 은 연삭한 소재보다 내식성이 크게 향상됨을 알 수 있다. 이는 가공 후의 재료표면이 거칠수록 내식성 이 저하되는 것으로 판단된다.

4.3.2. 블라스팅 조건에 의한 부식전위


블라스팅 조건에 따라 분극곡선을 조사한 결과를 Fig. 11 (a)~(c)와 Fig. 12 (a)~(c)에 나타낸다. 투사 재를 금강사를 사용하여 10초간 가공한 시험편의 부 식전위는 -327mV, 20초일 때 -430mV, 30초일 때 -362 mV로 각각 나타났다. 한편, 투사재를 알루미나로 사용 했을 때 10초간 가공한 시험편은 -389mV, 20초일 때 -410mV, 30초일 때 -389mV로 나타났다. 따라서 투사 재가 금강사와 알루미나 모두 20초간 블라스팅 가공 이 내식성이 가장 양호하였다. 이는 표면거칠기의 대 소에 따른 결과로 간주된다.


(a) Wire-brushing

(b) Grinding



(c) Fine sandpapering

(d) Blasting

Fig. 10. The anode polarization curve according to processing condition.

(a) 10 second

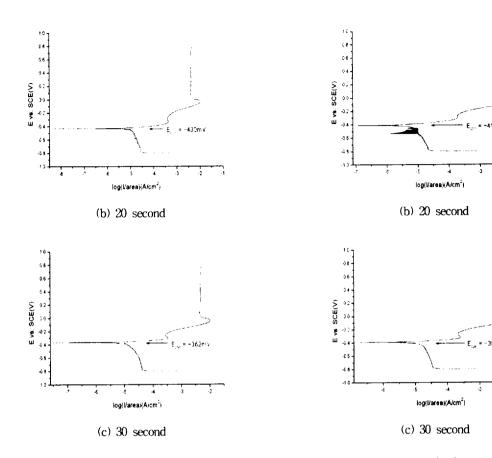
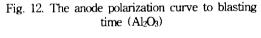
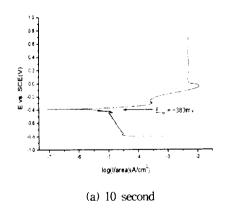




Fig. 11. The anode polarization curve to blasting time (emery)

V. 결 론

본 연구에서 블라스팅의 원리를 적용하여 스크류 부식제거장치를 설계 및 제작하여 스크류 부식제거 성능을 검토한 결과, 노즐 이송장치의 자동화에 의해 스크류 표면의 부식이 완전히 제거되어 양호한 부식 제거 효과를 얻을 수 있었으며, 개발 장치에 의한 스 크류의 표면가공은 와이어 브러쉬나 그라인더에 의한 수작업으로 가공한 경우보다 표면 거칠기가 개선되어 내부식성이 크게 개선되었다. 또, 블라스팅 가공 중 투사재의 종류에 관계없이 스크류 표면을 20초 가공 한 상태가 내식성이 가장 양호하였다.

참고문헌

- K. Fukuda, M. Ishizawa, A. Kimura, T. Umino, I. Nakano, Y. Kurose, 1975, Protection Method for Corrosion on Manganese Bronze Propellers, The Journal of M.E.S.J, 10(10), pp.836-843.
- 2) 松山 晃, 西矢 豊就, 慌木 猛, 今田 忠志, 2001, 船 体および推進器の汚損が推進性能にえる影響. 長崎 大學水産學部研究報告, 82, pp.111-118.
- G. Batis, N. Kouloumbi, E. Soulis, 1998, Sandblasting: the only way to eliminate rust?, Anticorrosion Methods and Materials, 45(4), pp.222-226.
- G. Andronikos, P. Valiadis, P. Vassiliou, 1998, The effect of blasiting materials on the corrosion of protected steel in sea water, Anti-corrosion Methods and Materials, 45(3), pp.153-156.
- 5) R. Javaherdashti, 2000, How corrosion affect industry and life, Anti-Corrosion Methods and Materials, 47(1), pp.30-33.
- 6) 김기주, 김용규(1994), 유사해수에서 동합금강의 부식특성에 관한 연구, 한국부식학회지, 23(3), pp.194-202.
- 7) 정성균, 김태형(2003), Al7075-T6의 최적 쇼트피 닝 조건에 관한 연구, 한국항공우주학회지, 31(7), pp.63-68.