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The Onset Condition of Taylor Vortex in Liquid Layer by an
Impulsively Started Rotating Inner Cylinder
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ABSTRACT

The onset of instability in the flow by an impulsively started rotating cylinder is analvzed under linear

theory. It is well-known that at the critical Tayvlor number 7 .= 1695 instability motion sets in under the

narrow-gap approximation. Here the dimensionless critical time 7. to mark the onset of instability motion

for T>T. is presented as a function of the Taylor number T. Available experimental data of water

indicates that deviation of the velocity profiles from their momentum diffusion occurs starting from a certain

time r=4r. It seems evident that during r.<7r<4r. convective motion is very weak and the laminar

diffusive momentum transfer is dominant.
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| . Introduction

The onset of instability induced by an impul-
sively started rotating cylinder was first investi-
gated experimentally by Chen and Christensen(1].
The initial laminar flow evolves into a secondary
flow pattern which consists of a series of Taylor
-like vortices. In this transient boundary-laver
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flow system the critical time ¢, to mark the onset

of secondary motion becomes an important ques-
tion. This problem may be called an extension of
Taylor instahility. The related instability analysis
has been conducted by using theamplification
theorvi2], the frozen-time model [2], and the
maximum-Taylor-number criterion [3]. The first
model requires the initial conditions and the
criterion to define manifest convection. The second
model is based on linear theory and yields the
critical time as the parameter. The third model is
the simplest one, which is based on the transient,
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developing Couette flow only. These models take
advantage of the similarity between Taylor ins-
tability and Rayvleigh~Bnard instability.

Here we will extend the propagation theory,
which has been emploved to analvze time-depen-
dent Rayleigh-Benard problem, into the instability
problem of flow induced by an impulsively started
rotating cylinder. The resulting theoretical results
will be compared with available experimental data.

I1. Stability Analysis

The system considered here is a Newtonian fluid
confined between concentric cylinders of radi R,
and R,(> R,). Let the axis of inner cylinder be
along the 2 axis of a cvlindrical coordinate
system (»’, 8,2°). For time ¢=0. the inner cylinder
1s impulsively started and maintained at a constant
surface speed V(=R ,2,) and outer cylinder is
kept stationary £2,=0, where 2, and 2. are the
angular velocities of inner and outer cvlinder, res-
pectively. The schematic diagram of the basic

system i1s shown in Fig. 1.

Fig. 1. Schematic diagram of syslem considered
here.

For a ligh V', secondary motion will set at a

certain time and the governing eguations of flow

field is expressed as
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where U P v and p represent the velocity
vector, the dynamic pressure, the kinematic visco-
sity and the density respectively. For small ¢ the
basic velocity field is represented by

V,= erfc{7-4LM} (3)

For small ¢ by neglecting the effect of curva-
ture, i.e. employing narrow-gap approximation, the
above Egs. (1) and (2) can be lineanzed and the
resulting  dimensionless  disturbance equations of
tow-dimensional flow using Eq. (3) are represented
by

a

B

ay*
( aayzz —02—%)0: Tau—aa%fo (5)
with proper boundary conditions,
u=0uldy=v=0 y=0 and 1 (6)

where t=u/d®, u=du JQR). v=1"/ VO',
Vi=V/V, y=(—R)/d and d=R,— R, The
subscript ‘0" denotes the basic state and «
represents the dimensionless vertical wavenumber.
It should be noted that the radial velocity compo-
nent #z is nondimensionalized by vR /d* rather
than V,". In the present system the most impor-
tant parameter is the Taylor number Ta defined as
via®

= > (
Ta VR, 7)
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Based on the balance between viscous and Cori-
olis terms, we set u=ru "(¥) and v=v"(¥). For
a boundary-layer flow system of 8oV the
dimensionless time z plays dual roles of time and
length. Here & denotes the boundary-layer thic-
kness. Now, the self-similar stability equations are
obtained from Egs. (4) and (3) as

[(D?=a*)*+ L (D7~ a 2D +2a ™)

=2Vsa*v™ (8

2

(D:+—é—CD~a*')= Ta*u*V, @)

where ¢=y/Vtr, D=d/dt. Ta “=7¥ Ta and
a*=aVtr The proper boundarv conditions of

no-slip are

u =Du*=v*=0 at t=0and c© (10)
For a given r, Ta™® and a *are treated as

eigenvalues and the minimum value of Ta”*

should be found in the plot of Ta ™ vs. « “under

the principle of exchange of stabilities.

il. Results and Discussions

By using outward shooting method with Newton
-Raphson iteration, we solve the above stability
equations and obtain the marginal stability curve.
Based on the result of Figure 2(a), the critical
conditions to mark the onset of secondary motion

is given by

r,=18.84 Ta "** and ¢.=0.19 Ta '
for —0 (11)

unstable

stable

Normalized Quantities

S=we'y

Fig. 2. Instability conditions for small time of
r—0 from propagation theorv: (a)
marginal stabilitvcurve and (b) amplitude
profiles at T=17,

The resulting normalized amplitude functions of

u* and v~ are shown in Figure 2(b). For a

given Ta, a fastest growing mode of infinitesimal
disturbances would be set in at r=r17, with
a=a,.. The above equations show that 7.
decreases with an increase in Ta Figure. 3
illustrates that the present predictions of 47, (—1)
compares well with Liu's [3] experimental data
(7=0.2) marking the detection of manifest motion.
Here 7 represents the ratio (R;/R.). The agree-
ment of experimental data with the amplification
theorv and Tan and Thorpe’s modell3] is also good
but the latter model requires further justification.
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Shen[6] suggested the momentary instability
condition: the temporal growth rate of the per-
turbation quantity () should exceed that of the

base flow (7). In the present system the dimen-

sionless growth rates are defined as the root-
mean-squared quantities of angular velocity com-

ponents:

_ 1 d< V0> b
Vo= < VO> dr (12a)
_ 1 &y ,

O SN dr (12b)

where < quantityzvf (fA (quantity) 2dA)/A and

A=S8dr with S=nrd/a. From the distributions
of the base flow(Eq. (3)) and the perturbation

quantities, we can obtain the following relation:

r0=rl=—41 for 0 (13)

T,

The above equation indicates that propagation
theory bounds the momentary stability conception.
Foster{7] commented that 7 ,=4r, for the time-
dependent Rayleigh-Benard problem. This means
that a fastest growing mode of instahilities. which
set in at 7= r, will grow with time until mani-
fest convection is detected at 7= r,. Chen and
Kirchner{2] reported similar trend for the present
time-dependent flow system. According to their
results, the time of intrinsic instability (r= ),
Le. the time at which the disturbances first tend to
grow, is about one-fourth of the time at which the
instability motion is clearly observable experi-
mentally. A growth period will be required, as
illustrated in Fig. 3. This scenario is supported by
the results from the amplification theory (r; and

r3(=1,)). A more refined studv including #-
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effect is now in progress.
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Fig. 3. Comparison of predictions with experimental
data of 7=0.2: For =0.1, r;and r;
from Chen and Kirchner2): (4) onset time
and (b) critical wave number.

. Conclusions

The onset of secondary motion in the flow by
an impulsively started rotating cvlinder has been
analyzed by using linear stability theoryv. The pro-
pagation theory has been employed to predict the
critical time 7. to mark the onset of convective
mstability. Even though the propagation theory is
a rather simple model, the relation of 7,,~4r, is

consistent  with experimental measurements. The
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present results show that the infinitesimal distur-

bance sets in at 7= r,. and grows until detected
around r=4r . This means that secondary motion
is very weak durng r.<7<r,. More refined

studies on the $etaS-effect and the nonlinear

growth of disturbances are under progress.
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