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The Onset of Convective Instabilities in the Laminar Boundary
Layer Flow over the Slightly Concave Walls

Min Chan Kim#* - Sang Baek Leex

ABSTRACT

The onset of convective instability in the laminar boundary layer over the slightly curved walls is
analvzed theoretically and compared with existing experimental data. A new set of stability equations are
derived by using propagation theory based on linear stability theory and momentarv instability concept. In
this analysis the disturbances are assumed to have the form of a longitudinal vortices and also to
experience the streamwise growth. It is found that upon the onset of instability, the disturbances do not
grow exponentially in streamwise direction, and that the disturbances are mainly confined to the velocity

boundary layer. The present study predicts the experimental results more reasonably.
Key Words : Gortler Vortex, Laminar Boundrv Laver Flow, Propagation Theory

flow. Since this kind of secondary flow occurs in

I . Introduction wide range of scientific and engineering fields such
as the design of high-efficiency curved parallel

It is well-known that in the primary laminar plate heat exchanger. the cooling of turbine blades

flows along concavely curved walls, the desta- and in the design of the modern supercritical

bilizing action of the centrifugal forces can produce airfoils - emploving  laminar  flow  control, many

secondarv motion in form of vortices. The related researchers have interests in the onset of secon-

hydrodvnamic instabilities usually lead to Taylor dary motion. In this classical problem, the roll-type

vortices in the flow between rotating concentric convective motions, known as Gortler vortices

cylinders or Gortler ones in the boundarv laver occur when the Gortler number exceeds a critical
value"”. The Gortler number means the ratio of the

centrifugal force and the viscous force. The basic
* AFuista 8h3hyshal . . . .
Department of Chemical Eng., Cheiu Nat'l Univ mechanism for this vortex is identical to that
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shown by Rayleighfor rotating inviscid fluid and
by Taylor for a rotating viscous fluid”. This ins-
tability
associated with the change in direction of motion
forced on the fluid by
boundary.

To analyze this problem,

motion is driven by centrifugal forces

the geometry of the
the local stability
analysis where the streamwise growth of distur-
bances was neglected and parallel flow was
assumed has been employeda’. After Gortler, many
attempts were made to correct, supplement and
extend his theorv. Emploving the effect of vertical
component of base flow, Floryan and Saric*'(1982)
reformulated this problem in a coordinate system
based on streamlines and potential lines and deter—
mined the critical Gotler number to be Go=0.4638.
Numerous theoretical and experimental studies
were reviewed by Flovan and San'c“, Floryan‘?’
and Schlichting and Gersten”.

The purpose of this study is to examine the
onset of convective instability of the laminar boun-
dary laverflow over the slightly curved walls by
emploving propagation theory. Propagation theory
is based on scaling and self-similar transformation
under linear theory, which has been used with
success in the stability analysis of Bnard-tvpe
convection’’ and in the onset of Taylor-like vortice
We  will
extend propagation theory to convective instahility
of the
slightly curved walls. For this specific svstem, the

in the time dependent Couette flows.

laminar houndary layver flow over the

instability criteria obtained by propagation theory
willbe compared with available experimental and

previous theoretical results.

Il. Base Flow Field

The is the laminar

boundary layer flow over the over the slightly

system considered here

curved walls as shown in Fig. 1. The radius of
curvature R is assumed to be much higher than
boundary layer thickness 4. A Newtonian fluid
flows along the X-direction with free stream
velocity U« . In this case, the base flow fields are

governed by the following equationsl);

R oUy, W, W, _
R+Z ax "oz TRz (1)
R al, al, UWo _
RrzUvax Mooz T Rvz =
_1l_ R 9P
o (R+2) 06X
2 2R W, U, } 9
+"{V1U°+ (®+2° ox  (®R+27)
R_ ., Wy oW, Ui 1 9P,
R+Z Y ex Moz T RvZT T o oz
2 IR Uy W, }
+V[V1W0+ TR gt @

Fig. 1.

Schematic diagram of system considered
here.

where Vv f is a modified Laplacian operator. With
the assumption of slightly curved wall (R=1/4)
and the definition of stream function ¥,

v
X

o

U=a— and W=~
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the above equations can be approximated by well- __ 1 % +v B, ©)
known Blasius equation: 0
v, v, oV, )
+ + W,
£t =0 (5) (55 + Voax+ oz
—— LBy, (10)
with the following boundary conditions
aw, oW, oU, oW
f=F=0 at ¢=0 (6.2) ( ot TUegx tWigx tWaz
f=1 at &-oo (6.b) oW,
¢ Wla—ZO) Ly voiw-Luu,  an

where the prime denotes the differentiation with res-
pect to ¢ The dimensionless variables are defined
by f=P0ULX) Y and (=Z(ULn) X'
The experimental justification of these simplification
for the slightlv curved wall was given by Liepmanl).

Il Disturbance Equations
In linear stability theory, the physical quantities,

such as velocity and pressure are expressed as

linear sumof basic quantities which are represented

previously section and infinitesimal perturbation
quantities in the following forms.

U = U0+ Ul (7)
P = PO + Pl
where U= iU+ JV+ kW denotes the velocity
vector and P the pressure, respectively. The sub-

scripts "0” and "1” represent basic and perturbation
quantities, respectively. Invoking the linear stability
theory, the following disturbance equations can be
derived under the assumption of slightly curved
wallb)

oU, | 3V, oW,

ax "oy Tz =0 ®)
al, ol al, o’ oV
(5o + UG T UG S WS W)
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Since the boundary layer thickness 1s proper
length scale for the boundary

disturbance equations of Eqgs.

layer flow, the
(8)-(11) must be

changed for this length scale. Therefore, the
nondimensionalized variables are introduced as
follows

r=tU./L

(x,3,2)=(X, YRe}* ZRe ")/ L

(u,v,w)=(G U, V,Re}*, W Re})/U.. (12

(U, w=
p="P,/(pU%Re ")

(U, W,Re )/ U ..

LL) It should be noted

where G, = %( »

that streamwise velocity disturbance is nondimen-
U./G; After

this nondimensionalization process, the dimension-

sionalized by rather than U ..

less equations governing the disturbances can he

written as
1 oJu_ dv  dw _ .
G, ax "oy T ez 0 (13)
du ou aU U
(6r+Uar +W +GLu 62)
_Gr 4 1 4° u‘ 0% | 3 u\ .
ReL ox RQL ar i 3)}2 + 0z )(14)
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( _ov I dv 4 Wau) The ahove relations are nondimensionalized as
T ox 0z
=__¢22+( 1L 3%, 3% 8% = _w .
R iyl re e az‘-’) (1) u 2% (20)
oU _u .
Giuw5- —5 )
w  gow, w W, ow ., oW I .
ar ox ~ G, ox oz T " 3z )
—_. 0D 1 %w | 3w, 3w where & is the dimensionless boundary layer
T Re, ox* * ay* oz (16) . mos —m .
thickness, 8=4/L=(x"*Re['"). This means that
with the proper boundary conditions Gortler vortex occurs due to % and this incipient
secondary flow is very weak at x= x . Because
u=v=w=0at 2=0 and 2—> 17

the terms involving 1/Re;, dp/dx, 8 ufox?,

x%3%0/3 and 8°w/dx® are neglected by involving
the houndary laver assumption (Re;—0)". In
addition, write U=¢ and

we may

S I-N0 B R
W=—=x 2¢ 2§’¢ .

IV. Propagation Theory

To examine the stability characteristics of this

problem, we must find the minimum value of G

that satisfies Egs. (13)-(17) for a given X. The
propagation theory employed to find the critical
streamwise position X . to mark the onset of
convection is based on the assumption that
disturbances are propagated mainlyv within the
velocity houndary laver thickness 4 at X > 4. In
this case the following scale analysis at X=X,
would be valid for dimensional perturbed quantities

of Egs. (8), (9) and (11).

v, . U

v W, 2 (18)
Wl UUljl

v TR (19)

U has the magnitude of order of 1, G* G 8% is
a constant for <1 from the above relations. In
this viewpoint the streamwise base velocity and its
perturbation have been nondimensionalized having
different scales. Since & is small in the region
considered here, the relation of |z>|w] is kept
but [1/G 9w/ dxl

tude as |du/dzl . The above relations are consis-

has the same order of magni-

tent with Egs. (13)-(17). Now, we assume that
steady disturbances are periodic with the wave-
number in the spanwise v-direction. From this and
the continuity equation of Eq. (13), the following
relation is obtained:

_w
a*v g (22)
where "a" represent the dimensionless wave
number, which means spanwise periodicity of

disturbance quantities. Based on the above rela-
tions, the relations of w=8"u", v=(8"""/a)v"
and w=68%0" can be obtained.

Shen® suggested the momentary instability con-
dition: the temporal growth rate of the perturbation
quantities () should exceed that of the base flow
(r,). By generalizing this momentary instability
conception into relative instability concept for the
present systemn, the marginal condition can be

determined at the position where r,=r, . In the
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present system the dimensionless streamwise
growth rates are defined as quantities of stream-

wise components:

-1 KU ‘
RO & 23)
-1 Kw
"=w f (24)

where  (quantity) = [(f‘ (quantity) L'dA)/A] v and
dA=2Adz. Here A denotes the cross sectional area
of one vortex roll pair in x— v plane. From the
base velocity distribution given by Egs. (4)~(6),
7y can be obtained as:

ro=-L (25)

For the case of »=0, the condition of #;= 7,
is fulfilled at x=x . . which will be discussed
later. If the related process is stll laminar-
diffusional flow dominant with G* = constant at
X=2x, it is probable that w(x,2)=u"(&).

This means that the amplitude function of stream-

wise velocity disturbances follows the behavior of
U So. for the most dangerous longitudinal vortex

rolls the disturbance quantities are expressed as

u u’(§)
V| = 61{7 (?)/(1 exp(iay) (26)
w 8w ()
» 8" (&)

Substituting Eq. (26) into Egs. (13) to (17), and

eliminating »° and p* we obtain the following
set of stability equation

(D*~a"u" = U~ % ¢Du )

+u”(—% §1)Uj+ W' Du™ + DU (27)
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(D*—a™uw'=—-2a ':G'Uu"+_é D™

+a"Du” - —,% Lo D™

+ DU( D"~ 1 thu ")

— 4 U DY D~ )

——% L‘U(Dgw'——él)zu "——é §D3u")

+ DW‘(D'-’w‘ - —é D~ %— £D%u)

+ W(Daw'—D:u"— ; é’DJu)
- U(a'zw'——% ta 'sz')

+au "(% W+ % EDW')

—Wa™Dw'—a"w DW* (28)
with
u*=w'=Dw'=0a &=(0 and © (29)

where " =u"/G*, a'=ad G =G 6 and

W‘=[—% ——é{qﬁ'}. The parameter @ * and G*

based on the length scaling factor of velocity
boundary laver thickness are assumed to be
eigenvalues. Now the principle of exchange of
stability 1s employed. and the minimum value of

G* is sought. This whole procedure is the
essence of the propagation theory.

The conventional local stability analysis with
parallerl flow model neglects the terms involving
(- )}/ox and set W' =0 in Eqgs. (13)-(16) in
amplitude coordinates x and 2 This results in
(DP=a™) =G WDU and (DP—a"™u"==-2a"" U
instead of Eqgs. (27) and (28"
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V. Solution Method

In order to solve the stability equation of Eq.
(27)~(29the basic flow field solution must be
obtained, a priori. For this purpose the fourth or
fifthorder Runge-Kutta-Fehlberg method is emplo-
ved. The stability equattons are solved by empl-
oying the outward shooting scheme. In order to
integrate these stability equations the proper value
of Du®, D*w’® and D3® at £=0 are assumed
for a given a°, since the stability equations and
the boundary conditions are all homogeneous,
D%w® at ¢=0 can be assigned arbitrarily and the
parameter G ' is assumed. This procedure can be
understood easily by taking into account of pro-
perties of eigenvalue problems. Since all the initial
conditions are provided, this initial value problem
can be proceeded numerically.

Integration is performed from the heated surface
¢£=0 to a fictitious outer boundary with the fourth
order Runge-Kutta-Gill method. If the guessed
values of G*. Du"(0) and D3 "(Q)are correct,
u', w' and Dw'will vanish at the outer
boundarv. To improve the initial guess the Newton
-Raphson iteration is used. When convergence is
achieved, the outer boundary is increased by
predetermined value and the above procedure is
repeated. Since the disturbances decay exponen-
tially outside the thermal boundary layer, the incre-
mental change in G also decays fast with an
increase in outer boundary depth. This behavior
enable us to extrapolate the eigenvalue G to the
infinite depth. Using the similar procedure, the
results from the local stability analvsis are obtained.

VI. Results and Discussions

The predicted values based on the above numer-

ical scheme constitute the stability curve, as
shown in Fig. 2. From this figure the stability

criteria of the minimum G* is found to be 1295
with its corresponding a® value of 054. The

eigenvalues G* and a” have the following forms;

2

G‘=Go'~‘=(-1%)( Uj")'and at=-24 ()
o bl

'ubk

Fig. 2. Neutral stability curve.

With the relation of 4./4=0.664, where 4, 1s
the momentum thickness, the above critical condi-

tions are given as

12

(%) Res=1.95 and
A=Re;(%)m=l4l.9 31

Now, the above results are compared with the
available experimental and also some available
predictions. Gortler9) emploved the local stability
theory with parallel flow assumption where the
terms involving &( - )/dx were neglected and W*

was set to 0. His theoretical results were sum-

marized as
4. 1/2
(R;) Re,,=0.58 and
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A=Re, ( % ) “2: 157.5 (32) Fig. 4, wherein the quantities have been normal-

Florvan and Saric4) reformulated this problem in
a coordinate system based on streamlines and
potential lines under the local stability assumption
where the streamwise amplification was neglected.
Their stability Go=0.4638 and

a*—0) and can be transformed as

criteria  were

(%)lr"zReJ\,:O.ZS and A=Rex(%) 1:2=oo
(33)

In Fig. 3 the above predictions are also com-
pared with experimental results. As shown in this
figure, theoretical results are lower than experi-
mental results. However, the present result predicts

more reasonably than the previous one.

10 7Y T T T
~=-u
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Fig. 3. Amplitude profiles at x=x

Since linear theory deals only with the growth
of infinitesimal disturbances it is possible that the
discrepancy between theory and experiment is due
to the fact that onlv finite disturbances are actu-
ally observed. The infinitesimal disturbances must
grow appreciably before they are observed.

At the critical conditions illustrated above, the

amplitude functions of #* and w " are featured in
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ized by the corresponding maximum magnitude
U rae And W . It is seen that incipient stream-
wise velocity disturbances are confined mainly
within the boundary laver thickness but vertical
velocity disturbances are driven moreupward over
the boundary thickhess. Based on the
distribution of incipient streamwise velocity distur-

layer

their streamwise growth rate can be
(19: ry=»,=1/(4x ). This

bances,
obtained from Eq.

means that for large G, the growth rate at

x=xds inverselv proportional to x. and the

present study bounds Shen’s relative instability

concept.
T
experimental result
O Licpmann' Re, (3 Ry=7
W' / ce g 4
¥ S PN
—_— 2090,
Tl ReARELYS
o T
& T
W' 4
Re,(3/R)=0 25
theorelical predictions ) -
— - presenl sludy
Florvan and Sanc’
0 1
10' w*
AR

Fig. 4. Comparison of predictions with experimental

data.
VIi. Conclusions
The onset of convective nstability of the
laminar boundary laver flow over the slightly

curved walls was analyzed. New stability equations
were derived bv employing propagation theory
based on the linear stability analvsts, under the
assumption that the amplitudes of disturbances

experience streamwise variation. The governing
1z

parameter was found to be (T) Re, or
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d.\ 1 schichten an konkaven Wnden gegeber gewis-
(T) Re 4, Although the present study under- - . ”
sen dreidimensionalen Strungen,” Z. angew.
12 , T 9 950
predicts the critical value of (_Rz) Re 4, better Math. Mech., Vol. 21, 250~252.

agreement with experimental data was obtained by
taking into account the streamwise variations of
disturbances than by neglecting them. It is inter-
esting that the velocity disturbances were confined
mainly within the velocity boundary laver thick-

ness.
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